Synaptic input and Ca
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
12 Jan 2024
12 Jan 2024
Historique:
received:
25
03
2022
accepted:
13
12
2023
medline:
13
1
2024
pubmed:
13
1
2024
entrez:
12
1
2024
Statut:
aheadofprint
Résumé
In the nervous system, only one type of neuron-glial synapse is known to exist: that between neurons and oligodendrocyte precursor cells (OPCs), yet their composition, assembly, downstream signaling and in vivo functions remain largely unclear. Here, we address these questions using in vivo microscopy in zebrafish spinal cord and identify postsynaptic molecules PSD-95 and gephyrin in OPCs. The puncta containing these molecules in OPCs increase during early development and decrease upon OPC differentiation. These puncta are highly dynamic and frequently assemble at 'hotspots'. Gephyrin hotspots and synapse-associated Ca
Identifiants
pubmed: 38216650
doi: 10.1038/s41593-023-01553-8
pii: 10.1038/s41593-023-01553-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : 1R21NS120650
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : F31NS130898
Organisme : Warren Alpert Foundation
ID : Scholar Award
Organisme : National Multiple Sclerosis Society (National MS Society)
ID : FG-1907-34613
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Franklin, R. J. M. & Ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008).
pubmed: 18931697
doi: 10.1038/nrn2480
Xiao, Y., Petrucco, L., Hoodless, L. J., Portugues, R. & Czopka, T. Oligodendrocyte precursor cells sculpt the visual system by regulating axonal remodeling. Nat. Neurosci. 25, 280–284 (2022).
pubmed: 35241802
pmcid: 8904260
doi: 10.1038/s41593-022-01023-7
Venkatesh, H. S. et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549, 533–537 (2017).
pubmed: 28959975
pmcid: 5891832
doi: 10.1038/nature24014
Bergles, D. E. & Richardson, W. D. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol. 8, a020453 (2016).
pmcid: 4743079
doi: 10.1101/cshperspect.a020453
Lundgaard, I. et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol. 11, e1001743 (2013).
pubmed: 24391468
pmcid: 3876980
doi: 10.1371/journal.pbio.1001743
de Biase, L. M. et al. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J. Neurosci. 31, 12650–12662 (2011).
pubmed: 21880926
pmcid: 3179911
doi: 10.1523/JNEUROSCI.2455-11.2011
Zonouzi, M. et al. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat. Neurosci. 18, 674–682 (2015).
pmcid: 4459267
doi: 10.1038/nn.3990
Balia, M., Benamer, N. & Angulo, M. C. A specific GABAergic synapse onto oligodendrocyte precursors does not regulate cortical oligodendrogenesis. Glia 65, 1821–1832 (2017).
pubmed: 28795438
doi: 10.1002/glia.23197
Mitew, S. et al. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat. Commun. 9, 306 (2018).
pubmed: 29358753
pmcid: 5778130
doi: 10.1038/s41467-017-02719-2
Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).
pubmed: 25849987
pmcid: 4414883
doi: 10.1038/nn.3992
Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).
pubmed: 24727982
pmcid: 4096908
doi: 10.1126/science.1252304
Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015).
pubmed: 25849985
pmcid: 4427868
doi: 10.1038/nn.3991
Nagy, B., Hovhannisyan, A., Barzan, R., Chen, T. J. & Kukley, M. Different patterns of neuronal activity trigger distinct responses of oligodendrocyte precursor cells in the corpus callosum. PLoS Biol. 15, e2001993 (2017).
pubmed: 28829781
pmcid: 5567905
doi: 10.1371/journal.pbio.2001993
Barron, T. & Kim, J. H. Neuronal input triggers Ca
pubmed: 31313856
pmcid: 6771819
doi: 10.1002/glia.23670
Sun, W., Matthews, E. A., Nicolas, V., Schoch, S. & Dietrich, D. Ng2 glial cells integrate synaptic input in global and dendritic calcium signals. Elife 5, e16262 (2016).
pubmed: 27644104
pmcid: 5052029
doi: 10.7554/eLife.16262
Hamilton, N., Vayro, S., Wigley, R. & Butt, A. M. Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 58, 66–79 (2010).
pubmed: 19533604
doi: 10.1002/glia.20902
Marisca, R. et al. Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nat. Neurosci. 23, 363–374 (2020).
pubmed: 32066987
pmcid: 7292734
doi: 10.1038/s41593-019-0581-2
Krasnow, A. M., Ford, M. C., Valdivia, L. E., Wilson, S. W. & Attwell, D. Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nat. Neurosci. 21, 24–30 (2018).
pubmed: 29230052
doi: 10.1038/s41593-017-0031-y
Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).
pubmed: 25186741
pmcid: 4152602
doi: 10.1523/JNEUROSCI.1860-14.2014
Gross, G. G. et al. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 78, 971–985 (2013).
pubmed: 23791193
pmcid: 3779638
doi: 10.1016/j.neuron.2013.04.017
Uezu, A. et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science. 353, 1123–1129 (2016).
pubmed: 27609886
pmcid: 5432043
doi: 10.1126/science.aag0821
Dempsey, W. P. et al. Regional synapse gain and loss accompany memory formation in larval zebrafish. Proc. Natl Acad. Sci. USA 119, e2107661119 (2022).
pubmed: 35031564
pmcid: 8784156
doi: 10.1073/pnas.2107661119
Hughes, A. N. & Appel, B. Oligodendrocytes express synaptic proteins that modulate myelin sheath formation. Nat. Commun. 10, 4125 (2019).
pubmed: 31511515
pmcid: 6739339
doi: 10.1038/s41467-019-12059-y
Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).
pubmed: 27284195
pmcid: 5221728
doi: 10.1126/science.aaf6463
Spitzer, S. O. et al. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 101, 459–471 (2019).
pubmed: 30654924
pmcid: 6372724
doi: 10.1016/j.neuron.2018.12.020
Yoshii, A. & Constantine-Paton, M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat. Neurosci. 10, 702–711 (2007).
pubmed: 17515902
doi: 10.1038/nn1903
Meier, J. & Grantyn, R. A gephyrin-related mechanism restraining glycine receptor anchoring at GABAergic synapses. J. Neurosci. 24, 1398–1405 (2004).
pubmed: 14960612
pmcid: 6730342
doi: 10.1523/JNEUROSCI.4260-03.2004
El-Husseini, A. E. -D., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt, D. S. PSD-95 involvement in maturation of excitatory synapses. Science 290, 1364–1368 (2000).
pubmed: 11082065
doi: 10.1126/science.290.5495.1364
Prange, O., Wong, T. P., Gerrow, K., Wang, Y. T. & El-Husseini, A. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc. Natl Acad. Sci. USA 101, 13915–13920 (2004).
pmcid: 518853
doi: 10.1073/pnas.0405939101
Saiyed, T. et al. Molecular basis of gephyrin clustering at inhibitory synapses: role of G- and E-domain interactions. J. Biol. Chem. 282, 5625–5632 (2007).
pubmed: 17182610
doi: 10.1074/jbc.M610290200
Dejanovic, B. et al. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol. 12, e1001908 (2014).
pubmed: 25025157
pmcid: 4099074
doi: 10.1371/journal.pbio.1001908
Oh, W. C., Lutzu, S., Castillo, P. E. & Kwon, H. B. De novo synaptogenesis induced by GABA in the developing mouse cortex. Science 353, 1037–1040 (2016).
pubmed: 27516412
pmcid: 5104171
doi: 10.1126/science.aaf5206
Fortin, D. A. et al. Live imaging of endogenous PSD-95 using ENABLED: a conditional strategy to fluorescently label endogenous proteins. J. Neurosci. 34, 16698–16712 (2014).
pubmed: 25505322
pmcid: 4261096
doi: 10.1523/JNEUROSCI.3888-14.2014
Fang, H., Bygrave, A. M., Roth, R. H., Johnson, R. C. & Huganir, R. L. An optimized CRISPR/Cas9 approach for precise genome editing in neurons. Elife 10, e65202 (2021).
pubmed: 33689678
pmcid: 7946428
doi: 10.7554/eLife.65202
Ifrim, M. F., Janusz-Kaminska, A. & Bassell, G. J. Development of single-molecule ubiquitination mediated fluorescence complementation to visualize protein ubiquitination dynamics in dendrites. Cell Rep. 41, 111658 (2022).
pubmed: 36384114
pmcid: 9795412
doi: 10.1016/j.celrep.2022.111658
Czopka, T., ffrench-Constant, C. & Lyons, D. A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths invivo. Dev. Cell 25, 599–609 (2013).
pubmed: 23806617
pmcid: 4013507
doi: 10.1016/j.devcel.2013.05.013
Almeida, A. R. & Macklin, W. B. Early myelination involves the dynamic and repetitive ensheathment of axons which resolves through a low and consistent stabilization rate. Elife 12, e82111 (2023).
pubmed: 37078701
pmcid: 10198724
doi: 10.7554/eLife.82111
Kukley, M., Nishiyama, A. & Dietrich, D. The fate of synaptic input to NG2 glial cells: Neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. J. Neurosci. 30, 8320–8331 (2010).
pubmed: 20554883
pmcid: 6634580
doi: 10.1523/JNEUROSCI.0854-10.2010
De Biase, L. M., Nishiyama, A. & Bergles, D. E. Excitability and synaptic communication within the oligodendrocyte lineage. J. Neurosci. 30, 3600–3611 (2010).
pubmed: 20219994
pmcid: 2838193
doi: 10.1523/JNEUROSCI.6000-09.2010
Hildebrand, D. G. C. et al. Whole-brain serial-section electron microscopy in larval zebrafish. Nature 545, 345–349 (2017).
pubmed: 28489821
pmcid: 5594570
doi: 10.1038/nature22356
Baraban, M., Koudelka, S. & Lyons, D. A. Ca
pubmed: 29230058
doi: 10.1038/s41593-017-0040-x
Lu, T. Y. et al. Norepinephrine modulates calcium dynamics in cortical oligodendrocyte precursor cells promoting proliferation during arousal in mice. Nat. Neurosci. 26, 1739–1750 (2023).
pubmed: 37697112
doi: 10.1038/s41593-023-01426-0
Fiore, F. et al. Norepinephrine regulates calcium signals and fate of oligodendrocyte precursor cells in the mouse cerebral cortex. Nat. Commun. 14, 8122 (2023).
pmcid: 10709653
doi: 10.1038/s41467-023-43920-w
Koudelka, S. et al. Individual neuronal subtypes exhibit diversity in CNS myelination mediated by synaptic vesicle release. Curr. Biol. 26, 1447–1455 (2016).
pubmed: 27161502
pmcid: 4906267
doi: 10.1016/j.cub.2016.03.070
Shipman, S. L. et al. Functional dependence of neuroligin on a new non-PDZ intracellular domain. Nat. Neurosci. 14, 718–726 (2011).
pubmed: 21532576
pmcid: 3171182
doi: 10.1038/nn.2825
Osso, L. A., Rankin, K. A. & Chan, J. R. Experience-dependent myelination following stress is mediated by the neuropeptide dynorphin. Neuron 109, 3619–3632 (2021).
pubmed: 34536353
pmcid: 8602781
doi: 10.1016/j.neuron.2021.08.015
Almeida, R. G. et al. Myelination induces axonal hotspots of synaptic vesicle fusion that promote sheath growth. Curr. Biol. 31, 3743–3754 (2021).
pubmed: 34270947
pmcid: 8445327
doi: 10.1016/j.cub.2021.06.036
Gerrow, K. et al. A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron 49, 547–562 (2006).
doi: 10.1016/j.neuron.2006.01.015
Panzer, J. A. et al. Neuromuscular synaptogenesis in wild-type and mutant zebrafish. Dev. Biol. 285, 340–357 (2005).
pubmed: 16102744
doi: 10.1016/j.ydbio.2005.06.027
Wierenga, C. J., Becker, N. & Bonhoeffer, T. GABAergic synapses are formed without the involvement of dendritic protrusions. Nat. Neurosci. 11, 1044–1052 (2008).
doi: 10.1038/nn.2180
Villa, K. L. et al. Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo. Neuron 89, 756–769 (2016).
pubmed: 26853302
pmcid: 4760889
doi: 10.1016/j.neuron.2016.01.010
Wake, H., Lee, P. R. & Fields, R. D. Control of local protein synthesis and initial events in myelination by action potentials. Science 333, 1647–1651 (2011).
pubmed: 21817014
pmcid: 3482340
doi: 10.1126/science.1206998
Proctor, D. T. et al. Axo-glial communication through neurexin–neuroligin signaling regulates myelination and oligodendrocyte differentiation. Glia 63, 2023–2039 (2015).
doi: 10.1002/glia.22875
Stogsdill, J. A. et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 551, 192–197 (2017).
pubmed: 29120426
pmcid: 5796651
doi: 10.1038/nature24638
Waggener, C. T., Dupree, J. L., Elgersma, Y. & Fuss, B. CaMKIIβ regulates oligodendrocyte maturation and CNS myelination. J. Neurosci. 33, 10453–10458 (2013).
pubmed: 23785157
pmcid: 3685839
doi: 10.1523/JNEUROSCI.5875-12.2013
Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: In command and control of cell motility. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/nrm1549 (2005).
Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803–816 (2015).
pubmed: 25913192
pmcid: 4447122
doi: 10.1016/j.cell.2015.04.012
Almeida, R. G. & Lyons, D. A. Intersectional gene expression in zebrafish using the split KalTA4 system. Zebrafish 12, 377–386 (2015).
pubmed: 26485616
pmcid: 4677521
doi: 10.1089/zeb.2015.1086
Meyer, M. P., Trimmer, J. S., Gilthorpe, J. D. & Smith, S. J. Characterization of zebrafish PSD-95 gene family members. J. Neurobiol. 63, 91–105 (2005).
pubmed: 15660367
doi: 10.1002/neu.20118
Easley-Neal, C., Fierro, J., Buchanan, J. A. & Washbourne, P. Late recruitment of synapsin to nascent synapses is regulated by Cdk5. Cell Rep. 3, 1199–1212 (2013).
pubmed: 23602570
pmcid: 3742072
doi: 10.1016/j.celrep.2013.03.031
Sheets, L., Trapani, J. G., Mo, W., Obholzer, N. & Nicolson, T. Ribeye is required for presynaptic CaV1.3a channel localization and afferent innervation of sensory hair cells. Development 138, 1309–1319 (2011).
pmcid: 3050663
doi: 10.1242/dev.059451
Fuhrmann, J. C. et al. Gephyrin interacts with dynein light chains 1 and 2, components of motor protein complexes. J. Neurosci. 22, 5393–5402 (2002).
pubmed: 12097491
pmcid: 6758200
doi: 10.1523/JNEUROSCI.22-13-05393.2002
Smolinsky, B., Eichler, S. A., Buchmeier, S., Meier, J. C. & Schwarz, G. Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis. J. Biol. Chem. 283, 17370–17379 (2008).
pubmed: 18411266
doi: 10.1074/jbc.M800985200
Craven, S. E., El-Husseini, A. E. & Bredt, D. S. Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron 22, 497–509 (1999).
pubmed: 10197530
doi: 10.1016/S0896-6273(00)80705-9
Topinka, J. R. & Bredt, D. S. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K
pubmed: 9459448
doi: 10.1016/S0896-6273(00)80440-7
Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
pubmed: 23868258
pmcid: 3777791
doi: 10.1038/nature12354
Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction Kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099 (2007).
pubmed: 17937395
doi: 10.1002/dvdy.21343
Wyart, C. et al. Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461, 407–410 (2009).
pubmed: 19759620
pmcid: 2770190
doi: 10.1038/nature08323
Di Donato, V. et al. 2C-Cas9: a versatile tool for clonal analysis of gene function. Genome Res. 26, 681–692 (2016).
pubmed: 26957310
pmcid: 4864464
doi: 10.1101/gr.196170.115
Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
pubmed: 27713081
doi: 10.1016/j.ymeth.2016.09.016
Srinivasan, R. et al. Ca
pmcid: 4429056
doi: 10.1038/nn.4001