Synaptic input and Ca


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
12 Jan 2024
Historique:
received: 25 03 2022
accepted: 13 12 2023
medline: 13 1 2024
pubmed: 13 1 2024
entrez: 12 1 2024
Statut: aheadofprint

Résumé

In the nervous system, only one type of neuron-glial synapse is known to exist: that between neurons and oligodendrocyte precursor cells (OPCs), yet their composition, assembly, downstream signaling and in vivo functions remain largely unclear. Here, we address these questions using in vivo microscopy in zebrafish spinal cord and identify postsynaptic molecules PSD-95 and gephyrin in OPCs. The puncta containing these molecules in OPCs increase during early development and decrease upon OPC differentiation. These puncta are highly dynamic and frequently assemble at 'hotspots'. Gephyrin hotspots and synapse-associated Ca

Identifiants

pubmed: 38216650
doi: 10.1038/s41593-023-01553-8
pii: 10.1038/s41593-023-01553-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : 1R21NS120650
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : F31NS130898
Organisme : Warren Alpert Foundation
ID : Scholar Award
Organisme : National Multiple Sclerosis Society (National MS Society)
ID : FG-1907-34613

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Franklin, R. J. M. & Ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008).
pubmed: 18931697 doi: 10.1038/nrn2480
Xiao, Y., Petrucco, L., Hoodless, L. J., Portugues, R. & Czopka, T. Oligodendrocyte precursor cells sculpt the visual system by regulating axonal remodeling. Nat. Neurosci. 25, 280–284 (2022).
pubmed: 35241802 pmcid: 8904260 doi: 10.1038/s41593-022-01023-7
Venkatesh, H. S. et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549, 533–537 (2017).
pubmed: 28959975 pmcid: 5891832 doi: 10.1038/nature24014
Bergles, D. E. & Richardson, W. D. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol. 8, a020453 (2016).
pmcid: 4743079 doi: 10.1101/cshperspect.a020453
Lundgaard, I. et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol. 11, e1001743 (2013).
pubmed: 24391468 pmcid: 3876980 doi: 10.1371/journal.pbio.1001743
de Biase, L. M. et al. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J. Neurosci. 31, 12650–12662 (2011).
pubmed: 21880926 pmcid: 3179911 doi: 10.1523/JNEUROSCI.2455-11.2011
Zonouzi, M. et al. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat. Neurosci. 18, 674–682 (2015).
pmcid: 4459267 doi: 10.1038/nn.3990
Balia, M., Benamer, N. & Angulo, M. C. A specific GABAergic synapse onto oligodendrocyte precursors does not regulate cortical oligodendrogenesis. Glia 65, 1821–1832 (2017).
pubmed: 28795438 doi: 10.1002/glia.23197
Mitew, S. et al. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat. Commun. 9, 306 (2018).
pubmed: 29358753 pmcid: 5778130 doi: 10.1038/s41467-017-02719-2
Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).
pubmed: 25849987 pmcid: 4414883 doi: 10.1038/nn.3992
Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).
pubmed: 24727982 pmcid: 4096908 doi: 10.1126/science.1252304
Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015).
pubmed: 25849985 pmcid: 4427868 doi: 10.1038/nn.3991
Nagy, B., Hovhannisyan, A., Barzan, R., Chen, T. J. & Kukley, M. Different patterns of neuronal activity trigger distinct responses of oligodendrocyte precursor cells in the corpus callosum. PLoS Biol. 15, e2001993 (2017).
pubmed: 28829781 pmcid: 5567905 doi: 10.1371/journal.pbio.2001993
Barron, T. & Kim, J. H. Neuronal input triggers Ca
pubmed: 31313856 pmcid: 6771819 doi: 10.1002/glia.23670
Sun, W., Matthews, E. A., Nicolas, V., Schoch, S. & Dietrich, D. Ng2 glial cells integrate synaptic input in global and dendritic calcium signals. Elife 5, e16262 (2016).
pubmed: 27644104 pmcid: 5052029 doi: 10.7554/eLife.16262
Hamilton, N., Vayro, S., Wigley, R. & Butt, A. M. Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 58, 66–79 (2010).
pubmed: 19533604 doi: 10.1002/glia.20902
Marisca, R. et al. Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nat. Neurosci. 23, 363–374 (2020).
pubmed: 32066987 pmcid: 7292734 doi: 10.1038/s41593-019-0581-2
Krasnow, A. M., Ford, M. C., Valdivia, L. E., Wilson, S. W. & Attwell, D. Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nat. Neurosci. 21, 24–30 (2018).
pubmed: 29230052 doi: 10.1038/s41593-017-0031-y
Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).
pubmed: 25186741 pmcid: 4152602 doi: 10.1523/JNEUROSCI.1860-14.2014
Gross, G. G. et al. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 78, 971–985 (2013).
pubmed: 23791193 pmcid: 3779638 doi: 10.1016/j.neuron.2013.04.017
Uezu, A. et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science. 353, 1123–1129 (2016).
pubmed: 27609886 pmcid: 5432043 doi: 10.1126/science.aag0821
Dempsey, W. P. et al. Regional synapse gain and loss accompany memory formation in larval zebrafish. Proc. Natl Acad. Sci. USA 119, e2107661119 (2022).
pubmed: 35031564 pmcid: 8784156 doi: 10.1073/pnas.2107661119
Hughes, A. N. & Appel, B. Oligodendrocytes express synaptic proteins that modulate myelin sheath formation. Nat. Commun. 10, 4125 (2019).
pubmed: 31511515 pmcid: 6739339 doi: 10.1038/s41467-019-12059-y
Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).
pubmed: 27284195 pmcid: 5221728 doi: 10.1126/science.aaf6463
Spitzer, S. O. et al. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 101, 459–471 (2019).
pubmed: 30654924 pmcid: 6372724 doi: 10.1016/j.neuron.2018.12.020
Yoshii, A. & Constantine-Paton, M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat. Neurosci. 10, 702–711 (2007).
pubmed: 17515902 doi: 10.1038/nn1903
Meier, J. & Grantyn, R. A gephyrin-related mechanism restraining glycine receptor anchoring at GABAergic synapses. J. Neurosci. 24, 1398–1405 (2004).
pubmed: 14960612 pmcid: 6730342 doi: 10.1523/JNEUROSCI.4260-03.2004
El-Husseini, A. E. -D., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt, D. S. PSD-95 involvement in maturation of excitatory synapses. Science 290, 1364–1368 (2000).
pubmed: 11082065 doi: 10.1126/science.290.5495.1364
Prange, O., Wong, T. P., Gerrow, K., Wang, Y. T. & El-Husseini, A. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc. Natl Acad. Sci. USA 101, 13915–13920 (2004).
pmcid: 518853 doi: 10.1073/pnas.0405939101
Saiyed, T. et al. Molecular basis of gephyrin clustering at inhibitory synapses: role of G- and E-domain interactions. J. Biol. Chem. 282, 5625–5632 (2007).
pubmed: 17182610 doi: 10.1074/jbc.M610290200
Dejanovic, B. et al. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol. 12, e1001908 (2014).
pubmed: 25025157 pmcid: 4099074 doi: 10.1371/journal.pbio.1001908
Oh, W. C., Lutzu, S., Castillo, P. E. & Kwon, H. B. De novo synaptogenesis induced by GABA in the developing mouse cortex. Science 353, 1037–1040 (2016).
pubmed: 27516412 pmcid: 5104171 doi: 10.1126/science.aaf5206
Fortin, D. A. et al. Live imaging of endogenous PSD-95 using ENABLED: a conditional strategy to fluorescently label endogenous proteins. J. Neurosci. 34, 16698–16712 (2014).
pubmed: 25505322 pmcid: 4261096 doi: 10.1523/JNEUROSCI.3888-14.2014
Fang, H., Bygrave, A. M., Roth, R. H., Johnson, R. C. & Huganir, R. L. An optimized CRISPR/Cas9 approach for precise genome editing in neurons. Elife 10, e65202 (2021).
pubmed: 33689678 pmcid: 7946428 doi: 10.7554/eLife.65202
Ifrim, M. F., Janusz-Kaminska, A. & Bassell, G. J. Development of single-molecule ubiquitination mediated fluorescence complementation to visualize protein ubiquitination dynamics in dendrites. Cell Rep. 41, 111658 (2022).
pubmed: 36384114 pmcid: 9795412 doi: 10.1016/j.celrep.2022.111658
Czopka, T., ffrench-Constant, C. & Lyons, D. A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths invivo. Dev. Cell 25, 599–609 (2013).
pubmed: 23806617 pmcid: 4013507 doi: 10.1016/j.devcel.2013.05.013
Almeida, A. R. & Macklin, W. B. Early myelination involves the dynamic and repetitive ensheathment of axons which resolves through a low and consistent stabilization rate. Elife 12, e82111 (2023).
pubmed: 37078701 pmcid: 10198724 doi: 10.7554/eLife.82111
Kukley, M., Nishiyama, A. & Dietrich, D. The fate of synaptic input to NG2 glial cells: Neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. J. Neurosci. 30, 8320–8331 (2010).
pubmed: 20554883 pmcid: 6634580 doi: 10.1523/JNEUROSCI.0854-10.2010
De Biase, L. M., Nishiyama, A. & Bergles, D. E. Excitability and synaptic communication within the oligodendrocyte lineage. J. Neurosci. 30, 3600–3611 (2010).
pubmed: 20219994 pmcid: 2838193 doi: 10.1523/JNEUROSCI.6000-09.2010
Hildebrand, D. G. C. et al. Whole-brain serial-section electron microscopy in larval zebrafish. Nature 545, 345–349 (2017).
pubmed: 28489821 pmcid: 5594570 doi: 10.1038/nature22356
Baraban, M., Koudelka, S. & Lyons, D. A. Ca
pubmed: 29230058 doi: 10.1038/s41593-017-0040-x
Lu, T. Y. et al. Norepinephrine modulates calcium dynamics in cortical oligodendrocyte precursor cells promoting proliferation during arousal in mice. Nat. Neurosci. 26, 1739–1750 (2023).
pubmed: 37697112 doi: 10.1038/s41593-023-01426-0
Fiore, F. et al. Norepinephrine regulates calcium signals and fate of oligodendrocyte precursor cells in the mouse cerebral cortex. Nat. Commun. 14, 8122 (2023).
pmcid: 10709653 doi: 10.1038/s41467-023-43920-w
Koudelka, S. et al. Individual neuronal subtypes exhibit diversity in CNS myelination mediated by synaptic vesicle release. Curr. Biol. 26, 1447–1455 (2016).
pubmed: 27161502 pmcid: 4906267 doi: 10.1016/j.cub.2016.03.070
Shipman, S. L. et al. Functional dependence of neuroligin on a new non-PDZ intracellular domain. Nat. Neurosci. 14, 718–726 (2011).
pubmed: 21532576 pmcid: 3171182 doi: 10.1038/nn.2825
Osso, L. A., Rankin, K. A. & Chan, J. R. Experience-dependent myelination following stress is mediated by the neuropeptide dynorphin. Neuron 109, 3619–3632 (2021).
pubmed: 34536353 pmcid: 8602781 doi: 10.1016/j.neuron.2021.08.015
Almeida, R. G. et al. Myelination induces axonal hotspots of synaptic vesicle fusion that promote sheath growth. Curr. Biol. 31, 3743–3754 (2021).
pubmed: 34270947 pmcid: 8445327 doi: 10.1016/j.cub.2021.06.036
Gerrow, K. et al. A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron 49, 547–562 (2006).
doi: 10.1016/j.neuron.2006.01.015
Panzer, J. A. et al. Neuromuscular synaptogenesis in wild-type and mutant zebrafish. Dev. Biol. 285, 340–357 (2005).
pubmed: 16102744 doi: 10.1016/j.ydbio.2005.06.027
Wierenga, C. J., Becker, N. & Bonhoeffer, T. GABAergic synapses are formed without the involvement of dendritic protrusions. Nat. Neurosci. 11, 1044–1052 (2008).
doi: 10.1038/nn.2180
Villa, K. L. et al. Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo. Neuron 89, 756–769 (2016).
pubmed: 26853302 pmcid: 4760889 doi: 10.1016/j.neuron.2016.01.010
Wake, H., Lee, P. R. & Fields, R. D. Control of local protein synthesis and initial events in myelination by action potentials. Science 333, 1647–1651 (2011).
pubmed: 21817014 pmcid: 3482340 doi: 10.1126/science.1206998
Proctor, D. T. et al. Axo-glial communication through neurexin–neuroligin signaling regulates myelination and oligodendrocyte differentiation. Glia 63, 2023–2039 (2015).
doi: 10.1002/glia.22875
Stogsdill, J. A. et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 551, 192–197 (2017).
pubmed: 29120426 pmcid: 5796651 doi: 10.1038/nature24638
Waggener, C. T., Dupree, J. L., Elgersma, Y. & Fuss, B. CaMKIIβ regulates oligodendrocyte maturation and CNS myelination. J. Neurosci. 33, 10453–10458 (2013).
pubmed: 23785157 pmcid: 3685839 doi: 10.1523/JNEUROSCI.5875-12.2013
Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: In command and control of cell motility. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/nrm1549 (2005).
Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803–816 (2015).
pubmed: 25913192 pmcid: 4447122 doi: 10.1016/j.cell.2015.04.012
Almeida, R. G. & Lyons, D. A. Intersectional gene expression in zebrafish using the split KalTA4 system. Zebrafish 12, 377–386 (2015).
pubmed: 26485616 pmcid: 4677521 doi: 10.1089/zeb.2015.1086
Meyer, M. P., Trimmer, J. S., Gilthorpe, J. D. & Smith, S. J. Characterization of zebrafish PSD-95 gene family members. J. Neurobiol. 63, 91–105 (2005).
pubmed: 15660367 doi: 10.1002/neu.20118
Easley-Neal, C., Fierro, J., Buchanan, J. A. & Washbourne, P. Late recruitment of synapsin to nascent synapses is regulated by Cdk5. Cell Rep. 3, 1199–1212 (2013).
pubmed: 23602570 pmcid: 3742072 doi: 10.1016/j.celrep.2013.03.031
Sheets, L., Trapani, J. G., Mo, W., Obholzer, N. & Nicolson, T. Ribeye is required for presynaptic CaV1.3a channel localization and afferent innervation of sensory hair cells. Development 138, 1309–1319 (2011).
pmcid: 3050663 doi: 10.1242/dev.059451
Fuhrmann, J. C. et al. Gephyrin interacts with dynein light chains 1 and 2, components of motor protein complexes. J. Neurosci. 22, 5393–5402 (2002).
pubmed: 12097491 pmcid: 6758200 doi: 10.1523/JNEUROSCI.22-13-05393.2002
Smolinsky, B., Eichler, S. A., Buchmeier, S., Meier, J. C. & Schwarz, G. Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis. J. Biol. Chem. 283, 17370–17379 (2008).
pubmed: 18411266 doi: 10.1074/jbc.M800985200
Craven, S. E., El-Husseini, A. E. & Bredt, D. S. Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron 22, 497–509 (1999).
pubmed: 10197530 doi: 10.1016/S0896-6273(00)80705-9
Topinka, J. R. & Bredt, D. S. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K
pubmed: 9459448 doi: 10.1016/S0896-6273(00)80440-7
Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
pubmed: 23868258 pmcid: 3777791 doi: 10.1038/nature12354
Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction Kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099 (2007).
pubmed: 17937395 doi: 10.1002/dvdy.21343
Wyart, C. et al. Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461, 407–410 (2009).
pubmed: 19759620 pmcid: 2770190 doi: 10.1038/nature08323
Di Donato, V. et al. 2C-Cas9: a versatile tool for clonal analysis of gene function. Genome Res. 26, 681–692 (2016).
pubmed: 26957310 pmcid: 4864464 doi: 10.1101/gr.196170.115
Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
pubmed: 27713081 doi: 10.1016/j.ymeth.2016.09.016
Srinivasan, R. et al. Ca
pmcid: 4429056 doi: 10.1038/nn.4001

Auteurs

Jiaxing Li (J)

Vollum Institute, Oregon Health & Science University, Portland, OR, USA. g.absent@gmail.com.

Tania G Miramontes (TG)

Vollum Institute, Oregon Health & Science University, Portland, OR, USA.

Tim Czopka (T)

Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.

Kelly R Monk (KR)

Vollum Institute, Oregon Health & Science University, Portland, OR, USA. monk@ohsu.edu.

Classifications MeSH