Driving pressure of respiratory system and lung stress in mechanically ventilated patients with active breathing.
Journal
Critical care (London, England)
ISSN: 1466-609X
Titre abrégé: Crit Care
Pays: England
ID NLM: 9801902
Informations de publication
Date de publication:
12 Jan 2024
12 Jan 2024
Historique:
received:
10
11
2023
accepted:
03
01
2024
medline:
13
1
2024
pubmed:
13
1
2024
entrez:
12
1
2024
Statut:
epublish
Résumé
During control mechanical ventilation (CMV), the driving pressure of the respiratory system (ΔP Thirty-one patients instrumented with esophageal and gastric catheters (n = 22) were switched from CMV to PAV+ and respiratory variables were recorded, over a maximum of 24 h. To decrease the contribution of random breaths with irregular characteristics, a 7-breath moving average technique was applied. In each patient, measurements were also analyzed per deciles of increasing lung elastance (E In 44,836 occluded breaths, ΔP In patients with ARDS ventilated with PAV+, injurious tidal lung stress and effort were infrequent. In the presence of expiratory muscle activity, ΔP
Sections du résumé
BACKGROUND
BACKGROUND
During control mechanical ventilation (CMV), the driving pressure of the respiratory system (ΔP
METHODS
METHODS
Thirty-one patients instrumented with esophageal and gastric catheters (n = 22) were switched from CMV to PAV+ and respiratory variables were recorded, over a maximum of 24 h. To decrease the contribution of random breaths with irregular characteristics, a 7-breath moving average technique was applied. In each patient, measurements were also analyzed per deciles of increasing lung elastance (E
RESULTS
RESULTS
In 44,836 occluded breaths, ΔP
CONCLUSION
CONCLUSIONS
In patients with ARDS ventilated with PAV+, injurious tidal lung stress and effort were infrequent. In the presence of expiratory muscle activity, ΔP
Identifiants
pubmed: 38217038
doi: 10.1186/s13054-024-04797-3
pii: 10.1186/s13054-024-04797-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
19Informations de copyright
© 2024. The Author(s).
Références
Baedorf Kassis E, Loring SH, Talmor D. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS. Intensive Care Med. 2016;42(8):1206–13.
pubmed: 27318943
doi: 10.1007/s00134-016-4403-7
Chiumello D, Carlesso E, Brioni M, Cressoni M. Airway driving pressure and lung stress in ARDS patients. Crit Care. 2016;20(1):276.
pubmed: 27545828
pmcid: 4993008
doi: 10.1186/s13054-016-1446-7
Gattinoni L, Carlesso E, Cadringher P, Valenza F, Vagginelli F, Chiumello D. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl. 2003;47:15s–25s.
pubmed: 14621113
doi: 10.1183/09031936.03.00021303
Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, et al. Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med. 2011;183(10):1354–62.
pubmed: 21297069
doi: 10.1164/rccm.201010-1757OC
Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Resp Crit Care Med. 2014;189:520–31.
pubmed: 24467647
doi: 10.1164/rccm.201312-2193CI
Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. New Engl J Med. 2015;372(8):747–55.
pubmed: 25693014
doi: 10.1056/NEJMsa1410639
Roca O, Peñuelas O, Muriel A, García-De-Acilu M, Laborda C, Sacanell J, et al. Driving pressure is a risk factor for ARDS in mechanically ventilated subjects without ARDS. Respir Care. 2021;66(10):1505–13.
pubmed: 34344717
doi: 10.4187/respcare.08587
Laffey JG, Bellani G, Pham T, Fan E, Madotto F, Bajwa EK, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42(12):1865–76.
pubmed: 27757516
doi: 10.1007/s00134-016-4571-5
Soundoulounaki S, Akoumianaki E, Kondili E, Pediaditis E, Prinianakis G, Vaporidi K, et al. Airway pressure morphology and respiratory muscle activity during end-inspiratory occlusions in pressure support ventilation. Crit Care. 2020;24(1):467.
pubmed: 32723356
pmcid: 7385937
doi: 10.1186/s13054-020-03169-x
Younes M, Webster K, Kun J, Roberts D, Masiowski B. A method for measuring passive elastance during proportional assist ventilation. Am J Respir Crit Care Med. 2001;164(1):50–60.
pubmed: 11435238
doi: 10.1164/ajrccm.164.1.2010068
Baedorf Kassis E, Loring SH, Talmor D. Lung volumes and transpulmonary pressure are decreased with expiratory effort and restored with passive breathing in ARDS: a reapplication of the traditional Campbell diagram. Intensive Care Med. 2018;44(4):534–6.
pubmed: 29516120
doi: 10.1007/s00134-018-5105-0
Doorduin J, Roesthuis LH, Jansen D, van der Hoeven JG, van Hees HWH, Heunks LMA. Respiratory muscle effort during expiration in successful and failed weaning from mechanical ventilation. Anesthesiology. 2018;129(3):490–501.
pubmed: 29771711
doi: 10.1097/ALN.0000000000002256
Guervilly C, Bisbal M, Forel JM, Mechati M, Lehingue S, Bourenne J, et al. Effects of neuromuscular blockers on transpulmonary pressures in moderate to severe acute respiratory distress syndrome. Intensive Care Med. 2017;43(3):408–18.
pubmed: 28013329
doi: 10.1007/s00134-016-4653-4
Iscoe S. Control of abdominal muscles. Prog Neurobiol. 1998;56(4):433–506.
pubmed: 9775401
doi: 10.1016/S0301-0082(98)00046-X
Georgopoulos D, Xirouchaki N, Tzanakis N, Younes M. Driving pressure during assisted mechanical ventilation: Is it controlled by patient brain? Respir Physiol Neurobiol. 2016;228:69–75.
pubmed: 26994756
doi: 10.1016/j.resp.2016.03.009
Younes M, Remmers J. Control of tidal volume and respiratory frequency. In: Hornbein T, editor. Control of Breathing. New York: Marcel Deckker; 1981. p. 163–70.
Vaporidi K, Psarologakis C, Proklou A, Pediaditis E, Akoumianaki E, Koutsiana E, et al. Driving pressure during proportional assist ventilation: an observational study. Ann Intensive Care. 2019;9:1–9.
pubmed: 30603960
pmcid: 6314935
doi: 10.1186/s13613-018-0477-4
Chen L, Grieco DL, Beloncle F, Chen GQ, Tiribelli N, Madotto F, et al. Partition of respiratory mechanics in patients with acute respiratory distress syndrome and association with outcome: a multicentre clinical study. Intensive Care Med. 2022;48(7):888–98.
pubmed: 35670818
pmcid: 9171739
doi: 10.1007/s00134-022-06724-y
De Vries HJ, Tuinman PR, Jonkman AH, Liu L, Qiu H, Girbes ARJ, et al. Performance of noninvasive airway occlusion maneuvers to assess lung stress and diaphragm effort in mechanically ventilated critically Ill patients. Anesthesiology. 2023;138(3):274–88.
pubmed: 36520507
doi: 10.1097/ALN.0000000000004467
Dianti J, Tisminetzky M, Ferreyro BL, Englesakis M, Del Sorbo L, Sud S, et al. Association of positive end-expiratory pressure and lung recruitment selection strategies with mortality in acute respiratory distress syndrome a systematic review and network meta-analysis. Am J Respir Crit Care Med. 2022;205(11):1300–10.
pubmed: 35180042
doi: 10.1164/rccm.202108-1972OC
Goligher EC, Dres M, Patel BK, Sahetya SK, Beitler JR, Telias I, et al. Lung- And diaphragm-protective ventilation. Am J Respir Crit Care Med. 2020;202(7):950–61.
pubmed: 32516052
pmcid: 7710325
doi: 10.1164/rccm.202003-0655CP
De Vries HJ, Jonkman AH, De Grooth HJ, Duitman JW, Girbes ARJ, Ottenheijm CAC, et al. Lung- and diaphragm-protective ventilation by titrating inspiratory support to diaphragm effort: a randomized clinical trial. Crit Care Med. 2022;50(2):192–203.
pubmed: 35100192
pmcid: 8797006
doi: 10.1097/CCM.0000000000005395
Georgopoulos D, Mitrouska I, Bshouty Z, Webster K, Patakas D, Younes M. Respiratory response to CO
pubmed: 9230739
doi: 10.1164/ajrccm.156.1.9606055
Ceorgopoulos D, Mitrouska I, Webster K, Bshouty Z, Younes M. Effects of inspiratory muscle unloading on the response of respiratory motor output to CO
doi: 10.1164/ajrccm.155.6.9196108
Parthasarathy S, Jubran A, Tobin MJ. Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med. 1998;158:1471–8.
pubmed: 9817695
doi: 10.1164/ajrccm.158.5.9802014
Parthasarathy S, Jubran A, Laghi F, Tobin MJ. Sternomastoid, rib cage, and expiratory muscle activity during weaning failure. J Appl Physiol. 2007;103(1):140–7.
pubmed: 17395760
doi: 10.1152/japplphysiol.00904.2006
Georgopoulos D, Prinianakis G, Kondili E. Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med. 2006;32:34–47.
pubmed: 16283171
doi: 10.1007/s00134-005-2828-5
Lessard MR, Lofaso F, Brochard L. Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med. 1995;151:562–9.
pubmed: 7842221
doi: 10.1164/ajrccm.151.2.7842221
Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240(4857):1285–93.
pubmed: 3287615
doi: 10.1126/science.3287615
Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5.
pubmed: 15405679
doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
Dianti J, Fard S, Wong J, Chan TCY, Del Sorbo L, Fan E, et al. Strategies for lung- and diaphragm-protective ventilation in acute hypoxemic respiratory failure: a physiological trial. Crit Care. 2022;26(1):1–10.
doi: 10.1186/s13054-022-04123-9
Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. New Engl J Med. 2008;359(20):2095–104.
pubmed: 19001507
doi: 10.1056/NEJMoa0708638
Talmor D, Sarge T, O’Donnell CR, Ritz R, Malhotra A, Lisbon A, et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med. 2006;34(5):1389–94.
pubmed: 16540960
pmcid: 2278169
doi: 10.1097/01.CCM.0000215515.49001.A2
Loring SH, O’Donnell CR, Behazin N, Malhotra A, Sarge T, Ritz R, et al. Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol. 2010;108:515–22.
pubmed: 20019160
doi: 10.1152/japplphysiol.00835.2009
De Chazal I, Hubmayr RD. Novel aspects of pulmonary mechanics in intensive care. Br J Anaesth. 2003;91(1):81–91.
pubmed: 12821568
doi: 10.1093/bja/aeg146
Hager DN, Brower RG. Customizing lung-protective mechanical ventilation strategies. Crit Care Med. 2006;34(5):1554–5.
pubmed: 16633256
doi: 10.1097/01.CCM.0000216183.25478.03
Yoshida T, Amato MBP, Grieco DL, Chen L, Lima CAS, Roldan R, et al. Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med. 2018;197(8):1018–26.
pubmed: 29323931
doi: 10.1164/rccm.201709-1806OC
Chiu LC, Hu HC, Hung CY, Chang CH, Tsai FC, Yang CT, et al. Dynamic driving pressure associated mortality in acute respiratory distress syndrome with extracorporeal membrane oxygenation. Ann Intensive Care. 2017;7(1):1–9.
doi: 10.1186/s13613-017-0236-y
Grasselli G, Beck J, Mirabella L, Pesenti A, Slutsky AS, Sinderby C. Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist. Intensive Care Med. 2012;38(7):1224–32.
pubmed: 22584798
doi: 10.1007/s00134-012-2588-y
Schmidt M, Kindler F, Cecchini J, Poitou T, Morawiec E, Persichini R, et al. Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction. Crit Care. 2015;19:56.
pubmed: 25879592
pmcid: 4355459
doi: 10.1186/s13054-015-0763-6
Euler C. Brainstem mechanisms for generation and control of breathing pattern. In: Handbook of Physiology. The Respiratory System. American Physiological Society Press, Bethesda; 1986. p 1–68.
Clark FJ, von Euler C. On the regulation of depth and rate of breathing. J Physiol. 1972;222(2):267–95.
pubmed: 5033464
pmcid: 1331381
doi: 10.1113/jphysiol.1972.sp009797
Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory Am Rev Respir Dis. 1992;145(1):114–20.
pubmed: 1731573
doi: 10.1164/ajrccm/145.1.114
Di Mussi R, Spadaro S, Volta CA, Bartolomeo N, Trerotoli P, Staffieri F, et al. Continuous assessment of neuro-ventilatory drive during 12 h of pressure support ventilation in critically ill patients. Crit Care. 2020;24(1):1–11.
doi: 10.1186/s13054-020-03357-9
Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically Ill patients. Pathophysiology and clinical implications. Am J Respir Crit Care Med. 2020;201(1):20–32.
pubmed: 31437406
doi: 10.1164/rccm.201903-0596SO
Akoumianaki E, Vaporidi K, Georgopoulos D. The injurious effects of elevated or nonelevated respiratory rate during mechanical ventilation. Am J Respir Crit Care Med. 2019;199(2):149–57.
pubmed: 30199652
doi: 10.1164/rccm.201804-0726CI
Pérez J, Dorado JH, Accoce M, Plotnikow GA. Airway and transpulmonary driving pressure by end-inspiratory holds during pressure support ventilation. Respir Care. 2023;68(11):1483–92.
pubmed: 37463722
doi: 10.4187/respcare.10802
Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36.
pubmed: 24283226
doi: 10.1056/NEJMra1208707
Xirouchaki N, Kondili E, Vaporidi K, Xirouchakis G, Klimathianaki M, Gavriilidis G, et al. Proportional assist ventilation with load-adjustable gain factors in critically ill patients: Comparison with pressure support. Intensive Care Med. 2008;34(11):2026–34.
pubmed: 18607562
doi: 10.1007/s00134-008-1209-2