Skin autofluorescence, reflecting accumulation of advanced glycation end products, and the risk of dementia in a population-based cohort.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 Jan 2024
Historique:
received: 21 10 2022
accepted: 08 01 2024
medline: 14 1 2024
pubmed: 14 1 2024
entrez: 13 1 2024
Statut: epublish

Résumé

Conditions such as hyperglycemia and oxidative stress lead to the formation of advanced glycation end products (AGEs), which are harmful compounds that have been implicated in dementia. Within the Rotterdam Study, we measured skin AGEs as skin autofluorescence, reflecting long-term accumulation of AGEs, and determined their association with the risk of dementia and with brain magnetic resonance imaging (MRI) measures. Skin autofluorescence was measured between 2013 and 2016 in 2922 participants without dementia. Of these, 1504 also underwent brain MRI, on which measures of brain atrophy and cerebral small vessel disease were assessed. All participants were followed for the incidence of dementia until 2020. Of 2922 participants (mean age 72.6 years, 57% women), 123 developed dementia. Higher skin autofluorescence (per standard deviation) was associated with an increased risk of dementia (hazard ratio 1.21 [95% confidence interval 1.01-1.46]) and Alzheimer's disease (1.19 [0.97-1.47]), independently of age and other studied potential confounders. Stronger effects were seen in apolipoprotein E (APOE) ε4 carriers (1.34 [0.98-1.82]) and in participants with diabetes (1.35 [0.94-1.94]). Participants with higher skin autofluorescence levels also had smaller total brain volumes and smaller hippocampus volumes on MRI, and they had more often lacunes. These results suggest that AGEs may be involved in dementia pathophysiology.

Identifiants

pubmed: 38218902
doi: 10.1038/s41598-024-51703-6
pii: 10.1038/s41598-024-51703-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1256

Subventions

Organisme : China Scholarship Council (CSC)
ID : 201906170053

Informations de copyright

© 2024. The Author(s).

Références

Singh, R., Barden, A., Mori, T. & Beilin, L. Advanced glycation end-products: A review. Diabetologia 44, 129–146. https://doi.org/10.1007/s001250051591 (2001).
doi: 10.1007/s001250051591 pubmed: 11270668
Brownlee, M. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 46, 223–234. https://doi.org/10.1146/annurev.med.46.1.223 (1995).
doi: 10.1146/annurev.med.46.1.223 pubmed: 7598459
Bierhaus, A. et al. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. (Berl.) 83, 876–886. https://doi.org/10.1007/s00109-005-0688-7 (2005).
doi: 10.1007/s00109-005-0688-7 pubmed: 16133426
Yaffe, K. et al. Advanced glycation end product level, diabetes, and accelerated cognitive aging. Neurology 77, 1351–1356. https://doi.org/10.1212/WNL.0b013e3182315a56 (2011).
doi: 10.1212/WNL.0b013e3182315a56 pubmed: 21900628 pmcid: 3182758
Srikanth, V. et al. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging 32, 763–777. https://doi.org/10.1016/j.neurobiolaging.2009.04.016 (2011).
doi: 10.1016/j.neurobiolaging.2009.04.016 pubmed: 19464758
Takeuchi, M. & Yamagishi, S. Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des. 14, 973–978. https://doi.org/10.2174/138161208784139693 (2008).
doi: 10.2174/138161208784139693 pubmed: 18473848
Igase, M. et al. Skin autofluorescence examination as a diagnostic tool for mild cognitive impairment in healthy people. J. Alzheimers Dis. 55, 1481–1487. https://doi.org/10.3233/JAD-160917 (2017).
doi: 10.3233/JAD-160917 pubmed: 27858716
Moran, C. et al. Type 2 diabetes, skin autofluorescence, and brain atrophy. Diabetes 64, 279–283. https://doi.org/10.2337/db14-0506 (2015).
doi: 10.2337/db14-0506 pubmed: 25053588
Srikanth, V. et al. Methylglyoxal, cognitive function and cerebral atrophy in older people. J. Gerontol. A Biol. Sci. Med. Sci. 68, 68–73. https://doi.org/10.1093/gerona/gls100 (2013).
doi: 10.1093/gerona/gls100 pubmed: 22496536
Sasaki, N. et al. Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am. J. Pathol. 153, 1149–1155. https://doi.org/10.1016/S0002-9440(10)65659-3 (1998).
doi: 10.1016/S0002-9440(10)65659-3 pubmed: 9777946 pmcid: 1853056
Deane, R. et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907–913. https://doi.org/10.1038/nm890 (2003).
doi: 10.1038/nm890 pubmed: 12808450
Chambers, A. et al. Advanced glycation end product formation in human cerebral cortex increases with Alzheimer-type neuropathologic changes but is not independently associated with dementia in a population-derived aging brain cohort. J. Neuropathol. Exp. Neurol. 79, 950–958. https://doi.org/10.1093/jnen/nlaa064 (2020).
doi: 10.1093/jnen/nlaa064 pubmed: 32766675
Meli, M. et al. Serum pentosidine as an indicator of Alzheimer’s disease. J. Alzheimers Dis. 4, 93–96. https://doi.org/10.3233/jad-2002-4203 (2002).
doi: 10.3233/jad-2002-4203 pubmed: 12214132
Lüth, H.-J. et al. Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb. Cortex 15, 211–220. https://doi.org/10.1093/cercor/bhh123 (2004).
doi: 10.1093/cercor/bhh123 pubmed: 15238435
Bär, K. J. et al. Pentosidine and N(epsilon)-(carboxymethyl)-lysine in Alzheimer’s disease and vascular dementia. Neurobiol. Aging 24, 333–338. https://doi.org/10.1016/s0197-4580(02)00086-6 (2003).
doi: 10.1016/s0197-4580(02)00086-6 pubmed: 12498967
Beeri, M. S., Uribarri, J., Cai, W., Buchman, A. S. & Haroutunian, V. Human brain and serum advanced glycation end products are highly correlated: Preliminary results of their role in Alzheimer disease and type 2 diabetes. Endocr. Pract. 26, 576–577. https://doi.org/10.4158/1934-2403-26.5.576 (2020).
doi: 10.4158/1934-2403-26.5.576 pubmed: 32396777 pmcid: 8254854
Ahmed, N. et al. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment. J. Neurochem. 92, 255–263. https://doi.org/10.1111/j.1471-4159.2004.02864.x (2005).
doi: 10.1111/j.1471-4159.2004.02864.x pubmed: 15663474
Lovestone, S. & Smith, U. Advanced glycation end products, dementia, and diabetes. Proc. Natl. Acad. Sci. USA 111, 4743–4744. https://doi.org/10.1073/pnas.1402277111 (2014).
doi: 10.1073/pnas.1402277111 pubmed: 24707042 pmcid: 3977311
Chen, J. et al. Assessment of advanced glycation end products and receptors and the risk of dementia. JAMA Netw. Open 4, e2033012. https://doi.org/10.1001/jamanetworkopen.2020.33012 (2021).
doi: 10.1001/jamanetworkopen.2020.33012 pubmed: 33416887 pmcid: 7794665
Li, Y. M. & Dickson, D. W. Enhanced binding of advanced glycation endproducts (AGE) by the ApoE4 isoform links the mechanism of plaque deposition in Alzheimer’s disease. Neurosci. Lett. 226, 155–158. https://doi.org/10.1016/s0304-3940(97)00266-8 (1997).
doi: 10.1016/s0304-3940(97)00266-8 pubmed: 9175590
Meerwaldt, R. et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia 47, 1324–1330. https://doi.org/10.1007/s00125-004-1451-2 (2004).
doi: 10.1007/s00125-004-1451-2 pubmed: 15243705
van Waateringe, R. P. et al. Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population. Diabetologia 62, 269–280. https://doi.org/10.1007/s00125-018-4769-x (2019).
doi: 10.1007/s00125-018-4769-x pubmed: 30460578
Spauwen, P. J. J. et al. Associations of advanced glycation end-products with cognitive functions in individuals with and without type 2 diabetes: The Maastricht Study. J. Clin. Endocrinol. Metab. 100, 951–960. https://doi.org/10.1210/jc.2014-2754 (2015).
doi: 10.1210/jc.2014-2754 pubmed: 25459912
Ikram, M. A. et al. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur. J. Epidemiol. 35, 483–517. https://doi.org/10.1007/s10654-020-00640-5 (2020).
doi: 10.1007/s10654-020-00640-5 pubmed: 32367290 pmcid: 7250962
Ikram, M. A. et al. The Rotterdam Scan Study: Design update 2016 and main findings. Eur. J. Epidemiol. 30, 1299–1315. https://doi.org/10.1007/s10654-015-0105-7 (2015).
doi: 10.1007/s10654-015-0105-7 pubmed: 26650042 pmcid: 4690838
Fischl, B. et al. Sequence-independent segmentation of magnetic resonance images. NeuroImage 23, S69–S84. https://doi.org/10.1016/j.neuroimage.2004.07.016 (2004).
doi: 10.1016/j.neuroimage.2004.07.016 pubmed: 15501102
Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006 (2009).
doi: 10.7326/0003-4819-150-9-200905050-00006 pubmed: 19414839 pmcid: 2763564
Woodward, J. Bi-allelic SNP genotyping using the TaqMan® assay. Methods Mol. Biol. 1145, 67–74. https://doi.org/10.1007/978-1-4939-0446-4_6 (2014).
doi: 10.1007/978-1-4939-0446-4_6 pubmed: 24816660
Wenham, P. R., Price, W. H. & Blandell, G. Apolipoprotein E genotyping by one-stage PCR. Lancet 337, 1158–1159. https://doi.org/10.1016/0140-6736(91)92823-k (1991).
doi: 10.1016/0140-6736(91)92823-k pubmed: 1674030
Vitek, M. P. et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 4766–4770. https://doi.org/10.1073/pnas.91.11.4766 (1994).
doi: 10.1073/pnas.91.11.4766 pubmed: 8197133 pmcid: 43869
Smith, M. A. et al. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. USA 91, 5710–5714. https://doi.org/10.1073/pnas.91.12.5710 (1994).
doi: 10.1073/pnas.91.12.5710 pubmed: 8202552 pmcid: 44066
Yan, S. D. et al. Glycated tau protein in Alzheimer disease: A mechanism for induction of oxidant stress. Proc. Natl. Acad. Sci. USA 91, 7787–7791. https://doi.org/10.1073/pnas.91.16.7787 (1994).
doi: 10.1073/pnas.91.16.7787 pubmed: 8052661 pmcid: 44487
Valente, T., Gella, A., Fernàndez-Busquets, X., Unzeta, M. & Durany, N. Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol. Dis. 37, 67–76. https://doi.org/10.1016/j.nbd.2009.09.008 (2010).
doi: 10.1016/j.nbd.2009.09.008 pubmed: 19778613
Münch, G., Westcott, B., Menini, T. & Gugliucci, A. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids 42, 1221–1236. https://doi.org/10.1007/s00726-010-0777-y (2012).
doi: 10.1007/s00726-010-0777-y pubmed: 20949363
Cai, Z. et al. Role of RAGE in Alzheimer’s disease. Cell. Mol. Neurobiol. 36, 483–495. https://doi.org/10.1007/s10571-015-0233-3 (2016).
doi: 10.1007/s10571-015-0233-3 pubmed: 26175217
Kook, S.-Y. et al. Aβ1–42-RAGE interaction disrupts tight junctions of the blood–brain barrier via Ca
doi: 10.1523/JNEUROSCI.6102-11.2012 pubmed: 22745485 pmcid: 6622350
Deane, R. et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J. Clin. Investig. 122, 1377–1392. https://doi.org/10.1172/jci58642 (2012).
doi: 10.1172/jci58642 pubmed: 22406537 pmcid: 3314449
Huang, Y.-Y. et al. RP1, a RAGE antagonist peptide, can improve memory impairment and reduce Aβ plaque load in the APP/PS1 mouse model of Alzheimer’s disease. Neuropharmacology 180, 108304. https://doi.org/10.1016/j.neuropharm.2020.108304 (2020).
doi: 10.1016/j.neuropharm.2020.108304 pubmed: 32931813
Lv, C. et al. Multi-faced neuroprotective effects of geniposide depending on the RAGE-mediated signaling in an Alzheimer mouse model. Neuropharmacology 89, 175–184. https://doi.org/10.1016/j.neuropharm.2014.09.019 (2015).
doi: 10.1016/j.neuropharm.2014.09.019 pubmed: 25261783
Cui, L. et al. A novel, multi-target natural drug candidate, matrine, improves cognitive deficits in Alzheimer’s disease transgenic mice by inhibiting Aβ aggregation and blocking the RAGE/Aβ axis. Mol. Neurobiol. 54, 1939–1952. https://doi.org/10.1007/s12035-016-9783-8 (2017).
doi: 10.1007/s12035-016-9783-8 pubmed: 26899576
Galasko, D. et al. Clinical trial of an inhibitor of RAGE-Aβ interactions in Alzheimer disease. Neurology 82, 1536–1542. https://doi.org/10.1212/wnl.0000000000000364 (2014).
doi: 10.1212/wnl.0000000000000364 pubmed: 24696507 pmcid: 4011464
Burstein, A. H. et al. Development of azeliragon, an oral small molecule antagonist of the receptor for advanced glycation endproducts, for the potential slowing of loss of cognition in mild Alzheimer’s disease. J. Prev. Alzheimer’s Dis. 5, 149–154. https://doi.org/10.14283/jpad.2018.18 (2018).
doi: 10.14283/jpad.2018.18
Liu, C.-C., Liu, C.-C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118. https://doi.org/10.1038/nrneurol.2012.263 (2013).
doi: 10.1038/nrneurol.2012.263 pubmed: 23296339 pmcid: 3726719
Peila, R., Rodriguez, B. L. & Launer, L. J. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 51, 1256–1262. https://doi.org/10.2337/diabetes.51.4.1256 (2002).
doi: 10.2337/diabetes.51.4.1256 pubmed: 11916953
Xue, M. et al. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev. 55, 100944. https://doi.org/10.1016/j.arr.2019.100944 (2019).
doi: 10.1016/j.arr.2019.100944 pubmed: 31430566
Nowotny, K., Jung, T., Höhn, A., Weber, D. & Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5, 194–222. https://doi.org/10.3390/biom5010194 (2015).
doi: 10.3390/biom5010194 pubmed: 25786107 pmcid: 4384119
Rajaobelina, K. et al. Autofluorescence of skin advanced glycation end products: Marker of metabolic memory in elderly population. J. Gerontol. Ser. A 70, 841–846. https://doi.org/10.1093/gerona/glu243 (2015).
doi: 10.1093/gerona/glu243
Spalding, K. L., Bhardwaj, R. D., Buchholz, B. A., Druid, H. & Frisén, J. Retrospective birth dating of cells in humans. Cell 122, 133–143. https://doi.org/10.1016/j.cell.2005.04.028 (2005).
doi: 10.1016/j.cell.2005.04.028 pubmed: 16009139

Auteurs

Sanne S Mooldijk (SS)

Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.

Tianqi Lu (T)

Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.

Komal Waqas (K)

Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.

Jinluan Chen (J)

Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.

Meike W Vernooij (MW)

Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.

M Kamran Ikram (MK)

Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.

M Carola Zillikens (MC)

Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.

M Arfan Ikram (MA)

Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands. m.a.ikram@erasmusmc.nl.

Classifications MeSH