Phytofabricated bimetallic synthesis of silver-copper nanoparticles using Aerva lanata extract to evaluate their potential cytotoxic and antimicrobial activities.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
13 Jan 2024
13 Jan 2024
Historique:
received:
16
06
2023
accepted:
08
01
2024
medline:
14
1
2024
pubmed:
14
1
2024
entrez:
13
1
2024
Statut:
epublish
Résumé
In this study, we demonstrate the green synthesis of bimetallic silver-copper nanoparticles (Ag-Cu NPs) using Aerva lanata plant extract. These NPs possess diverse biological properties, including in vitro antioxidant, antibiofilm, and cytotoxic activities. The synthesis involves the reduction of silver nitrate and copper oxide salts mediated by the plant extract, resulting in the formation of crystalline Ag-Cu NPs with a face-centered cubic structure. Characterization techniques confirm the presence of functional groups from the plant extract, acting as stabilizing and reducing agents. The synthesized NPs exhibit uniform-sized spherical morphology ranging from 7 to 12 nm. They demonstrate significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, inhibiting extracellular polysaccharide secretion in a dose-dependent manner. The Ag-Cu NPs also exhibit potent cytotoxic activity against cancerous HeLa cell lines, with an inhibitory concentration (IC
Identifiants
pubmed: 38218918
doi: 10.1038/s41598-024-51647-x
pii: 10.1038/s41598-024-51647-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1270Informations de copyright
© 2024. The Author(s).
Références
de la Fuente-Núñez, C., Reffuveille, F., Fernández, L. & Hancock, R. E. W. Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 16, 580–589 (2013).
pubmed: 23880136
doi: 10.1016/j.mib.2013.06.013
Wibb, J. S. et al. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185, 4585–4592 (2003).
doi: 10.1128/JB.185.15.4585-4592.2003
Patrice, D. C. G. A. C. C. Evolution of antimicrobial resistance: Impact on antibiotic use. Semin. Respir. Crit. Care Med. 23, 449–456 (2002).
doi: 10.1055/s-2002-35716
Rice, L. B. Progress and challenges in implementing the research on ESKAPE pathogens. Infect. Control Hosp. Epidemiol. 31, S7–S10 (2010).
pubmed: 20929376
doi: 10.1086/655995
Elgundi, Z. et al. Cancer metastasis: The role of the extracellular matrix and the heparan sulfate proteoglycan perlecan. Front. Oncol. 9, 1482 (2020).
pubmed: 32010611
pmcid: 6978720
doi: 10.3389/fonc.2019.01482
Cluntun, A. A., Lukey, M. J., Cerione, R. A. & Locasale, J. W. Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer 3, 169–180 (2017).
pubmed: 28393116
pmcid: 5383348
doi: 10.1016/j.trecan.2017.01.005
Gong, T. et al. Glutamine metabolism in cancers: Targeting the oxidative homeostasis. Front. Oncol. 12, 994672 (2022).
pubmed: 36324588
pmcid: 9621616
doi: 10.3389/fonc.2022.994672
Wan, N. et al. Bacterial metabolism during biofilm growth investigated by 13C tracing. Front. Microbiol. 9, 2657 (2018).
pubmed: 30515135
pmcid: 6255981
doi: 10.3389/fmicb.2018.02657
Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. & Danquah, M. K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018).
pubmed: 29719757
pmcid: 5905289
doi: 10.3762/bjnano.9.98
Sharma, G. et al. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci. 31, 257–269 (2019).
doi: 10.1016/j.jksus.2017.06.012
He, Y. et al. Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv. 7, 39842–39851 (2017).
doi: 10.1039/C7RA05286C
Mundekkad, D. & Cho, W. C. Nanoparticles in clinical translation for cancer therapy. Int. J. Mol. Sci. 23, 1685 (2022).
pubmed: 35163607
pmcid: 8835852
doi: 10.3390/ijms23031685
Lu, F. et al. Plant-mediated synthesis of Ag–Pd alloy nanoparticles and their application as catalyst toward selective hydrogenation. ACS Sustain. Chem. Eng. 2, 1212–1218 (2014).
doi: 10.1021/sc500034r
Loza, K., Heggen, M. & Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv. Funct. Mater. 30, 1909260 (2020).
doi: 10.1002/adfm.201909260
Padilla-Cruz, A. L. et al. Synthesis and design of Ag–Fe bimetallic nanoparticles as antimicrobial synergistic combination therapies against clinically relevant pathogens. Sci. Rep. 11, 5351 (2021).
pubmed: 33674678
pmcid: 7935916
doi: 10.1038/s41598-021-84768-8
Mittal, A. K., Kumar, S. & Banerjee, U. C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci. 431, 194–199 (2014).
pubmed: 25000181
doi: 10.1016/j.jcis.2014.06.030
Shah, S. et al. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling 35, 34–49 (2019).
pubmed: 30727758
doi: 10.1080/08927014.2018.1563686
Gomathi, A. C., Rajarathinam, S. R. X., Sadiq, A. M. & Rajeshkumar, S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J. Drug Deliv. Sci. Technol. 55, 101376 (2020).
doi: 10.1016/j.jddst.2019.101376
Zhang, X.-F., Liu, Z.-G., Shen, W. & Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016).
pubmed: 27649147
pmcid: 5037809
doi: 10.3390/ijms17091534
Pavithran, S., Pappuswamy, M., Annadurai, Y., Armugam, V. A. & Periyaswamy, T. Green synthesis of copper nanoparticles, characterization and their applications. J. Appl. Life Sci. Int. 23, 10–24 (2020).
doi: 10.9734/jalsi/2020/v23i730172
Ghumman, S. A. et al. Mimosa pudica mucilage nanoparticles of losartan potassium: Characterization and pharmacodynamics evaluation. Saudi Pharm. J. 31, 101695 (2023).
pubmed: 37520120
pmcid: 10372173
doi: 10.1016/j.jsps.2023.101695
Parvekar, P., Palaskar, J., Metgud, S., Maria, R. & Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 7, 105–109 (2020).
pubmed: 32939454
pmcid: 7470068
Shanmugam, R. & Chelladurai, M. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg. Chem. Appl. 2014, 581890 (2014).
Hassan, A. et al. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz. J. Infect. Dis. 15, 305–311 (2011).
pubmed: 21860999
doi: 10.1016/S1413-8670(11)70197-0
Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R. K., Deepak, V. & Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B Biointerfaces 79, 340–344 (2010).
pubmed: 20493674
doi: 10.1016/j.colsurfb.2010.04.014
Gandhi, A. D. et al. In vitro anti- biofilm and anti-bacterial activity of Sesbania grandiflora extract against Staphylococcus aureus. Biochem. Biophys. Rep. 12, 193–197 (2017).
pubmed: 29090281
pmcid: 5655386
Ludwig, T. G. & Goldberg, H. J. V. The anthrone method for the determination of carbohydrates in foods and in oral rinsing. J. Dent. Res. 35, 90–94 (1956).
pubmed: 13286391
doi: 10.1177/00220345560350012301
Alavi, M. & Karimi, N. Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artif. Cells Nanomed. Biotechnol. 46, 2066–2081 (2018).
pubmed: 29233039
Ferreira, I. C. F. R., Baptista, P., Vilas-Boas, M. & Barros, L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 100, 1511–1516 (2007).
doi: 10.1016/j.foodchem.2005.11.043
Sivamaruthi, B. S., Ramkumar, V. S., Archunan, G., Chaiyasut, C. & Suganthy, N. Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula—In vitro evaluation of anticancer and antimicrobial activity. J. Drug Deliv. Sci. Technol. 51, 139–151 (2019).
doi: 10.1016/j.jddst.2019.02.024
Goyal, M., Pareek, A., Nagori, B. & Sasmal, D. Aerva lanata: A review on phytochemistry and pharmacological aspects. Pharmacogn. Rev. 5, 195–198 (2011).
pubmed: 22279378
pmcid: 3263055
doi: 10.4103/0973-7847.91120
Zhao, Y., Kumar, D., Prasad, D. N., Singh, R. K. & Ma, Y. Morphoanatomic, physicochemical, and phytochemical standardization with HPTLC fingerprinting of aerial parts of Aerva lanata (Linn) Juss ex Schult. J. Tradit. Chin. Med. Sci. 2, 39–44 (2015).
Moteriya, P. & Chanda, S. Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artif. Cells Nanomed. Biotechnol. 45, 1556–1567 (2017).
pubmed: 27900878
doi: 10.1080/21691401.2016.1261871
Kanniah, P. et al. Green synthesis of multifaceted silver nanoparticles using the flower extract of Aerva lanata and evaluation of its biological and environmental applications. ChemistrySelect 5, 2322–2331 (2020).
doi: 10.1002/slct.201903228
Kumar, G., Karthik, L. & Rao, K. V. B. Phytochemical composition and in vitro antioxidant activity of aqueous extract of Aerva lanata (L.) Juss. ex Schult. Stem (Amaranthaceae). Asian Pac. J. Trop. Med. 6, 180–187 (2013).
pubmed: 23375030
doi: 10.1016/S1995-7645(13)60020-6
Joseph, S. & Mathew, B. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 136, 1371–1379 (2015).
pubmed: 25459695
doi: 10.1016/j.saa.2014.10.023
Barapatre, A., Aadil, K. R. & Jha, H. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour. Bioprocess. 3, 8 (2016).
doi: 10.1186/s40643-016-0083-y
Kobayashi, Y., Maeda, T., Yasuda, Y. & Morita, T. Metal–metal bonding using silver/copper nanoparticles. Appl. Nanosci. 6, 883–893 (2016).
doi: 10.1007/s13204-015-0489-4
Ismail, M. et al. Green synthesis of plant supported CuAg and CuNi bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J. Mol. Liq. 260, 78–91 (2018).
doi: 10.1016/j.molliq.2018.03.058
Halder, M. et al. Biogenic nano-CuO-catalyzed facile C-N cross-coupling reactions: Scope and mechanism. ACS Sustain. Chem. Eng. 5, 648–657 (2017).
doi: 10.1021/acssuschemeng.6b02013
Ismail, M. et al. Green synthesis of antibacterial bimetallic Ag–Cu nanoparticles for catalytic reduction of persistent organic pollutants. J. Mater. Sci. Mater. Electron. 29, 20840–20855 (2018).
doi: 10.1007/s10854-018-0227-2
Al Tamimi, S. et al. Synthesis and analysis of silver–copper alloy nanoparticles of different ratios manifest anticancer activity in breast cancer cells. Cancer Nanotechnol. 11, 13 (2020).
doi: 10.1186/s12645-020-00069-1
Pelletier, D. A. et al. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl. Environ. Microbiol. 76, 7981–7989 (2010).
pubmed: 20952651
pmcid: 3008265
doi: 10.1128/AEM.00650-10
Pal, S., Tak, Y. K. & Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007).
pubmed: 17261510
pmcid: 1828795
doi: 10.1128/AEM.02218-06
Naidu, S. et al. Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications. Part. Sci. Technol. 40, 84–96 (2022).
doi: 10.1080/02726351.2021.1919259
Al-Ansari, M. et al. Identification of phytochemical components from Aerva lanata (Linn.) medicinal plants and its in-vitro inhibitory activity against drug resistant microbial pathogens and antioxidant properties. Saudi J. Biol. Sci. 26, 1129–1133 (2019).
pubmed: 31516340
pmcid: 6734131
doi: 10.1016/j.sjbs.2019.02.010
Thanganadar Appapalam, S. & Panchamoorthy, R. Aerva lanata mediated phytofabrication of silver nanoparticles and evaluation of their antibacterial activity against wound associated bacteria. J. Taiwan Inst. Chem. Eng. 78, 539–551 (2017).
doi: 10.1016/j.jtice.2017.06.035
Guzman, M., Dille, J. & Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 8, 37–45 (2012).
doi: 10.1016/j.nano.2011.05.007
Slavin, Y. N., Asnis, J., Häfeli, U. O. & Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 65 (2017).
doi: 10.1186/s12951-017-0308-z
Ghosh, S. et al. Dioscorea Bulbifera mediated synthesis of novel AucoreAgshell nanoparticles with potent antibiofilm and antileishmanial activity. J. Nanomater. 16, 1–12 (2015).
doi: 10.1155/2015/562938
Borcherding, J. et al. Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environ. Sci. Nano 1, 123–132 (2014).
pubmed: 25221673
pmcid: 4158920
doi: 10.1039/c3en00029j
Al-Sheddi, E. S. et al. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl. 2018, e9390784 (2018).
doi: 10.1155/2018/9390784
Sharma, D. et al. An investigation of physicochemical and biological properties of rheum emodi-mediated bimetallic Ag–Cu nanoparticles. Arab. J. Sci. Eng. 46, 275–285 (2021).
doi: 10.1007/s13369-020-04641-0
Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 8, 125–131 (1975).
doi: 10.1021/ar50088a003