Effects of escitalopram therapy on effective connectivity among core brain networks in major depressive disorder.
Effective connectivity
Escitalopram therapy
Major depressive disorder
Resting-state functional magnetic resonance imaging
Spectral dynamic causal modeling
Journal
Journal of affective disorders
ISSN: 1573-2517
Titre abrégé: J Affect Disord
Pays: Netherlands
ID NLM: 7906073
Informations de publication
Date de publication:
12 Jan 2024
12 Jan 2024
Historique:
received:
09
10
2023
revised:
06
01
2024
accepted:
09
01
2024
medline:
15
1
2024
pubmed:
15
1
2024
entrez:
14
1
2024
Statut:
aheadofprint
Résumé
Patients with major depressive disorder (MDD) have abnormal functional interaction among large-scale brain networks, indicated by aberrant effective connectivity of the default mode network (DMN), salience network (SN), and dorsal attention network (DAN). However, it remains unclear whether antidepressants can normalize the altered effective connectivity in MDD. In this study, we collected resting-state functional magnetic resonance imaging data from 46 unmedicated patients with MDD at baseline and after 12 weeks of escitalopram treatment. We also collected data from 58 healthy controls (HCs) at the same time point with the same interval. Using spectral dynamic causal modeling and parametric empirical Bayes, we examined group differences, time effect and their interaction on the casual interactions among the regions of interest in the three networks. Compared with HCs, patients with MDD showed increased positive (excitatory) connections within the DMN, decreased positive connections within the SN and DAN, decreased absolute value of negative (inhibitory) connectivity from the SN and DAN to the DMN, and decreased positive connections between the DAN and the SN. Furthermore, we found that six connections related to the DAN showed decreased group differences in effective connectivity between MDD and HCs during follow-up compared to the baseline. Our findings suggest that escitalopram therapy can partly improve the disrupted effective connectivity among high-order brain functional networks in MDD. These findings deepened our understanding of the neural basis of antidepressants' effect on brain function in patients with MDD.
Sections du résumé
BACKGROUND
BACKGROUND
Patients with major depressive disorder (MDD) have abnormal functional interaction among large-scale brain networks, indicated by aberrant effective connectivity of the default mode network (DMN), salience network (SN), and dorsal attention network (DAN). However, it remains unclear whether antidepressants can normalize the altered effective connectivity in MDD.
METHODS
METHODS
In this study, we collected resting-state functional magnetic resonance imaging data from 46 unmedicated patients with MDD at baseline and after 12 weeks of escitalopram treatment. We also collected data from 58 healthy controls (HCs) at the same time point with the same interval. Using spectral dynamic causal modeling and parametric empirical Bayes, we examined group differences, time effect and their interaction on the casual interactions among the regions of interest in the three networks.
RESULTS
RESULTS
Compared with HCs, patients with MDD showed increased positive (excitatory) connections within the DMN, decreased positive connections within the SN and DAN, decreased absolute value of negative (inhibitory) connectivity from the SN and DAN to the DMN, and decreased positive connections between the DAN and the SN. Furthermore, we found that six connections related to the DAN showed decreased group differences in effective connectivity between MDD and HCs during follow-up compared to the baseline.
CONCLUSIONS
CONCLUSIONS
Our findings suggest that escitalopram therapy can partly improve the disrupted effective connectivity among high-order brain functional networks in MDD. These findings deepened our understanding of the neural basis of antidepressants' effect on brain function in patients with MDD.
Identifiants
pubmed: 38220106
pii: S0165-0327(24)00124-1
doi: 10.1016/j.jad.2024.01.115
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2024. Published by Elsevier B.V.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare no conflict of interest.