Strengthening of alpha synchronization is a neural correlate of cognitive transfer.
MEG
cortical oscillations
cortical plasticity
working memory
Journal
Cerebral cortex (New York, N.Y. : 1991)
ISSN: 1460-2199
Titre abrégé: Cereb Cortex
Pays: United States
ID NLM: 9110718
Informations de publication
Date de publication:
31 Jan 2024
31 Jan 2024
Historique:
received:
04
09
2023
revised:
15
12
2023
accepted:
16
12
2023
medline:
6
2
2024
pubmed:
15
1
2024
entrez:
14
1
2024
Statut:
ppublish
Résumé
Cognitive training can lead to improvements in both task-specific strategies and general capacities, such as visuo-spatial working memory (VSWM). The latter emerge slowly and linearly throughout training, in contrast to strategy where changes typically occur within the first days of training. Changes in strategy and capacity have not been separated in prior neuroimaging studies. Here, we used a within-participants design with dense temporal sampling to capture the time dynamics of neural mechanisms associated with change in capacity. In four participants, neural activity was recorded with magnetoencephalography on seven occasions over two months of visuo-spatial working memory training. During scanning, the participants performed a trained visuo-spatial working memory task, a transfer task, and a control task. First, we extracted an individual visuo-spatial working memory-load-dependent synchronization network for each participant. Next, we identified linear changes over time in the network, congruent with the temporal dynamics of capacity change. Three out of four participants showed a gradual strengthening of alpha synchronization. Strengthening of the same connections was also found in the transfer task but not in the control task. This suggests that cognitive transfer occurs through slow, gradual strengthening of alpha synchronization between cortical regions that are vital for both the trained task and the transfer task.
Identifiants
pubmed: 38220577
pii: 7529137
doi: 10.1093/cercor/bhad527
pmc: PMC10839847
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Medical Research Council
ID : MR/V013769/1
Pays : United Kingdom
Informations de copyright
© The Author(s) 2024. Published by Oxford University Press.
Références
Neuroimage. 2019 Oct 1;199:81-86
pubmed: 31145982
J Neurosci. 2015 Apr 22;35(16):6277-83
pubmed: 25904781
Neuroimage. 2019 Mar;188:722-732
pubmed: 30605784
J Chem Neuroanat. 2003 Dec;26(4):317-30
pubmed: 14729134
Science. 1980 Jun 6;208(4448):1181-2
pubmed: 7375930
J Neurosci Methods. 2014 Apr 15;226:147-160
pubmed: 24509129
Nat Commun. 2019 Sep 18;10(1):4242
pubmed: 31534123
Curr Opin Neurobiol. 2020 Dec;65:10-19
pubmed: 32942125
Trends Cogn Sci. 2010 Feb;14(2):72-80
pubmed: 20080054
Nat Hum Behav. 2021 Nov;5(11):1548-1554
pubmed: 34017098
Cereb Cortex. 2011 Dec;21(12):2722-32
pubmed: 21527786
Curr Biol. 2020 May 4;30(9):1748-1754.e4
pubmed: 32275881
Psychol Res. 2014 Nov;78(6):869-77
pubmed: 25260390
Neuropsychologia. 2006;44(11):2171-7
pubmed: 16405923
J Neurosci. 2011 Mar 30;31(13):5013-25
pubmed: 21451039
Cereb Cortex. 2020 Mar 21;30(2):672-681
pubmed: 31504278
NPJ Sci Learn. 2023 May 6;8(1):12
pubmed: 37149680
Annu Rev Neurosci. 1998;21:149-86
pubmed: 9530495
Neuropsychologia. 2011 May;49(6):1428-34
pubmed: 21182852
Curr Biol. 2009 Nov 17;19(21):1846-52
pubmed: 19913428
Neuroimage. 2014 Feb 1;86:446-60
pubmed: 24161808
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):9897-9904
pubmed: 30275315
Br J Psychol. 2019 May;110(2):245-255
pubmed: 30079531
Elife. 2016 Sep 26;5:
pubmed: 27669146
Trends Cogn Sci. 2014 Jan;18(1):16-25
pubmed: 24268290
Neuroimage. 2018 Jun;173:610-622
pubmed: 29378318
Psychon Bull Rev. 2018 Dec;25(6):2083-2101
pubmed: 29557067
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6829-33
pubmed: 18443283
Neuroimage. 2018 Jan 15;165:222-237
pubmed: 29074278
J Neurosci. 2016 Apr 06;36(14):4056-66
pubmed: 27053212
Nat Rev Neurosci. 2016 Jul;17(7):438-49
pubmed: 27225070
Front Aging Neurosci. 2010 Jul 13;2:
pubmed: 20725526
Neuroimage. 2018 Jun;173:384-393
pubmed: 29501552
Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7580-5
pubmed: 20368447
J Cogn Neurosci. 2017 Sep;29(9):1509-1520
pubmed: 28358656
Hum Brain Mapp. 2013 Feb;34(2):396-406
pubmed: 22076823
Nature. 2021 Apr;592(7855):601-605
pubmed: 33790467
Science. 2021 Nov 12;374(6569):eaba6905
pubmed: 34618550
Cereb Cortex. 2018 Sep 1;28(9):3095-3114
pubmed: 28981612
J Neurosci. 2010 Mar 3;30(9):3297-303
pubmed: 20203189
J Mem Lang. 2016 Sep 12;105:19-42
pubmed: 31235992
Science. 2022 Nov 4;378(6619):505-510
pubmed: 36378968
J Neurosci. 1988 Nov;8(11):4049-68
pubmed: 2846794
Science. 2007 Jun 15;316(5831):1609-12
pubmed: 17569862
J Am Acad Child Adolesc Psychiatry. 2005 Feb;44(2):177-86
pubmed: 15689731
J Neurosci. 2013 May 15;33(20):8705-15
pubmed: 23678114
Neuroimage. 2018 Jun;173:632-643
pubmed: 29477441
Neuroimage. 2012 Mar;60(1):830-46
pubmed: 22178808
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6106-E6115
pubmed: 29915059
PLoS Biol. 2023 Feb 13;21(2):e3001999
pubmed: 36780560
Trends Cogn Sci. 2022 Aug;26(8):626-630
pubmed: 35710894
Schizophr Bull. 2012 Nov;38(6):1308-17
pubmed: 22499780
Neuroscientist. 2005 Aug;11(4):357-72
pubmed: 16061522