Manganese disrupts the maturation and degradation of axonal autophagosome leading to hippocampal synaptic toxicity in mice via the activation of LRRK2 on phosphorylation of Rab10.
Autophagy-lysosomal fusion
LRRK2
Manganese
Synaptotoxicity
Journal
The Science of the total environment
ISSN: 1879-1026
Titre abrégé: Sci Total Environ
Pays: Netherlands
ID NLM: 0330500
Informations de publication
Date de publication:
13 Jan 2024
13 Jan 2024
Historique:
received:
07
11
2023
revised:
03
01
2024
accepted:
07
01
2024
medline:
16
1
2024
pubmed:
16
1
2024
entrez:
15
1
2024
Statut:
aheadofprint
Résumé
Manganese (Mn) overexposure induces hippocampal synaptotoxicity by the accumulation of dysfunctional synaptic vesicles (SVs). Leucine-rich repeat kinase 2 (LRRK2) kinase activity is involved in regulating axonal transport (autophagosomal maturation) and lysosomal function. Nevertheless, it remains unclear whether Mn-induced synaptotoxicity is associated with the LRRK2-mediated disruption of autophagosomal maturation in axonal transport and the impairment of lysosomes in hippocampal neurons. Here, we established models of manganism in C57BL/6 mice and hippocampal neuronal HT22 cells to verify the role of LRRK2-mediated Rab10 phosphorylation in the Mn-induced dysfunction of autophagy- lysosomal fusion. Our results proved that Mn-induced the disorder of axonal transport and that lysosome impairments were associated with the increased recruitment of phospho-Rab10 at the axon and lysosomes. Next, we established Lrrk2-KD and LRRK2 kinase- specific inhibitor (GNE-0877, GNE) pre-treated HT22 cells to inhibit Lrrk2 gene expression and kinase activity, respectively. In Mn-treated Lrrk2-KD or GNE-pretreated normal neurons, our results indicated that lysosomal pH and integrity and autophagic flow were restored, indicating by decreased levels of phospho-Rab10 on lysosomes and JNK-interacting proteins (JIP4). In addition, GNE pretreatment could provide protection against Mn-induced synaptotoxicity in vivo, which was evidenced by the partial recovery in synaptic plasticity and synaptic damage. Thus, the Mn-induced abnormal activation of LRRK2 affected lysosomes and the recruitment of phospho-Rab10 by JIP4, which disrupted autophagosomal maturation in proximal axons and resulted in the hippocampal synaptic toxicity of mice.
Identifiants
pubmed: 38224893
pii: S0048-9697(24)00155-4
doi: 10.1016/j.scitotenv.2024.170021
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
170021Informations de copyright
Copyright © 2024. Published by Elsevier B.V.