Methodology for biomarker discovery with reproducibility in microbiome data using machine learning.

Machine learning Microbiome Reproducibility

Journal

BMC bioinformatics
ISSN: 1471-2105
Titre abrégé: BMC Bioinformatics
Pays: England
ID NLM: 100965194

Informations de publication

Date de publication:
15 Jan 2024
Historique:
received: 03 12 2023
accepted: 04 01 2024
medline: 16 1 2024
pubmed: 16 1 2024
entrez: 15 1 2024
Statut: epublish

Résumé

In recent years, human microbiome studies have received increasing attention as this field is considered a potential source for clinical applications. With the advancements in omics technologies and AI, research focused on the discovery for potential biomarkers in the human microbiome using machine learning tools has produced positive outcomes. Despite the promising results, several issues can still be found in these studies such as datasets with small number of samples, inconsistent results, lack of uniform processing and methodologies, and other additional factors lead to lack of reproducibility in biomedical research. In this work, we propose a methodology that combines the DADA2 pipeline for 16s rRNA sequences processing and the Recursive Ensemble Feature Selection (REFS) in multiple datasets to increase reproducibility and obtain robust and reliable results in biomedical research. Three experiments were performed analyzing microbiome data from patients/cases in Inflammatory Bowel Disease (IBD), Autism Spectrum Disorder (ASD), and Type 2 Diabetes (T2D). In each experiment, we found a biomarker signature in one dataset and applied to 2 other as further validation. The effectiveness of the proposed methodology was compared with other feature selection methods such as K-Best with F-score and random selection as a base line. The Area Under the Curve (AUC) was employed as a measure of diagnostic accuracy and used as a metric for comparing the results of the proposed methodology with other feature selection methods. Additionally, we use the Matthews Correlation Coefficient (MCC) as a metric to evaluate the performance of the methodology as well as for comparison with other feature selection methods. We developed a methodology for reproducible biomarker discovery for 16s rRNA microbiome sequence analysis, addressing the issues related with data dimensionality, inconsistent results and validation across independent datasets. The findings from the three experiments, across 9 different datasets, show that the proposed methodology achieved higher accuracy compared to other feature selection methods. This methodology is a first approach to increase reproducibility, to provide robust and reliable results.

Sections du résumé

BACKGROUND BACKGROUND
In recent years, human microbiome studies have received increasing attention as this field is considered a potential source for clinical applications. With the advancements in omics technologies and AI, research focused on the discovery for potential biomarkers in the human microbiome using machine learning tools has produced positive outcomes. Despite the promising results, several issues can still be found in these studies such as datasets with small number of samples, inconsistent results, lack of uniform processing and methodologies, and other additional factors lead to lack of reproducibility in biomedical research. In this work, we propose a methodology that combines the DADA2 pipeline for 16s rRNA sequences processing and the Recursive Ensemble Feature Selection (REFS) in multiple datasets to increase reproducibility and obtain robust and reliable results in biomedical research.
RESULTS RESULTS
Three experiments were performed analyzing microbiome data from patients/cases in Inflammatory Bowel Disease (IBD), Autism Spectrum Disorder (ASD), and Type 2 Diabetes (T2D). In each experiment, we found a biomarker signature in one dataset and applied to 2 other as further validation. The effectiveness of the proposed methodology was compared with other feature selection methods such as K-Best with F-score and random selection as a base line. The Area Under the Curve (AUC) was employed as a measure of diagnostic accuracy and used as a metric for comparing the results of the proposed methodology with other feature selection methods. Additionally, we use the Matthews Correlation Coefficient (MCC) as a metric to evaluate the performance of the methodology as well as for comparison with other feature selection methods.
CONCLUSIONS CONCLUSIONS
We developed a methodology for reproducible biomarker discovery for 16s rRNA microbiome sequence analysis, addressing the issues related with data dimensionality, inconsistent results and validation across independent datasets. The findings from the three experiments, across 9 different datasets, show that the proposed methodology achieved higher accuracy compared to other feature selection methods. This methodology is a first approach to increase reproducibility, to provide robust and reliable results.

Identifiants

pubmed: 38225565
doi: 10.1186/s12859-024-05639-3
pii: 10.1186/s12859-024-05639-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26

Informations de copyright

© 2024. The Author(s).

Références

Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67(9):1716–25.
pubmed: 29934437 doi: 10.1136/gutjnl-2018-316723
Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, Che T, Zhang C. Alteration of gut microbiota in inflammatory bowel disease (ibd): Cause or consequence? ibd treatment targeting the gut microbiome. Pathogens. 2019;8(3):126.
pubmed: 31412603 pmcid: 6789542 doi: 10.3390/pathogens8030126
Dickson I. Diagnosing ibd with the gut microbiome. Nat Rev Gastroenterol Hepatol. 2017;14(4):195–195.
pubmed: 28250469 doi: 10.1038/nrgastro.2017.25
McIlroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold G. the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharmacol Ther. 2018;47(1):26–42.
pubmed: 29034981 doi: 10.1111/apt.14384
Michail S, Durbin M, Turner D, Griffiths AM, Mack DR, Hyams J, Leleiko N, Kenche H, Stolfi A, Wine E. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis. 2012;18(10):1799–808.
pubmed: 22170749 doi: 10.1002/ibd.22860
Li Q, Chang Y, Zhang K, Chen H, Tao S, Zhang Z. Implication of the gut microbiome composition of type 2 diabetic patients from northern china. Sci Rep. 2020;10(1):1–8.
Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: Where we are and where to go? J Nutr Biochem. 2019;63:101–8.
pubmed: 30366260 doi: 10.1016/j.jnutbio.2018.10.003
Aydin Ö, Nieuwdorp M, Gerdes V. The gut microbiome as a target for the treatment of type 2 diabetes. Curr DiabRep. 2018;18:1–11.
Reitmeier S, Kiessling S, Clavel T, List M, Almeida EL, Ghosh TS, Neuhaus K, Grallert H, Linseisen J, Skurk T, et al. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe. 2020;28(2):258–72.
pubmed: 32619440 doi: 10.1016/j.chom.2020.06.004
Pulikkan J, Mazumder A, Grace T. Role of the gut microbiome in autism spectrum disorders. Rev Biomark Stud Psychiatr Neurodegener Disorders 2019;253–269
Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci 2017;120
Fowlie G, Cohen N, Ming X. The perturbance of microbiome and gut-brain axis in autism spectrum disorders. Int J Mol Sci. 2018;19(8):2251.
pubmed: 30071612 pmcid: 6121241 doi: 10.3390/ijms19082251
Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiat. 2017;81(5):411–23.
pubmed: 27773355 doi: 10.1016/j.biopsych.2016.08.024
Liu Y, Lau HC-H, Cheng WY, Yu J. Gut microbiome in colorectal cancer: clinical diagnosis and treatment. Genom Proteom Bioinform. 2022;21:84–96.
doi: 10.1016/j.gpb.2022.07.002
Zhang Y, Shen J, Shi X, Du Y, Niu Y, Jin G, Wang Z, Lyu J. Gut microbiome analysis as a predictive marker for the gastric cancer patients. Appl Microbiol Biotechnol. 2021;105:803–14.
pubmed: 33404833 doi: 10.1007/s00253-020-11043-7
Deng T, Li J, He B, Chen B, Liu F, Chen Z, Zheng J, Shi Z, Zhang T, Deng L, et al. Gut microbiome alteration as a diagnostic tool and associated with inflammatory response marker in primary liver cancer. Hep Intl. 2022;16(1):99–111.
doi: 10.1007/s12072-021-10279-3
Zhao F, An R, Wang L, Shan J, Wang X. Specific gut microbiome and serum metabolome changes in lung cancer patients. Front Cell Infect Microbiol. 2021;11: 725284.
pubmed: 34527604 pmcid: 8435782 doi: 10.3389/fcimb.2021.725284
Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33(4):570–80.
pubmed: 29634945 pmcid: 6529202 doi: 10.1016/j.ccell.2018.03.015
Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8.
pubmed: 28530702 doi: 10.1038/nm.4345
Yang Y, Tian J, Yang B. Targeting gut microbiome: a novel and potential therapy for autism. Life Sci. 2018;194:111–9.
pubmed: 29277311 doi: 10.1016/j.lfs.2017.12.027
Knox NC, Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiome as a target for ibd treatment: Are we there yet? Curr Treat Options Gastroenterol. 2019;17:115–26.
pubmed: 30661163 doi: 10.1007/s11938-019-00221-w
Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31(1):69.
pubmed: 25394236 pmcid: 4290017 doi: 10.1097/MOG.0000000000000139
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. Reproducible, interactive, scalable and extensible microbiome data science using qiime 2. Nat Biotechnol. 2019;37(8):852–7.
pubmed: 31341288 pmcid: 7015180 doi: 10.1038/s41587-019-0209-9
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. Vsearch: a versatile open source tool for metagenomics. PeerJ. 2016;4:2584.
doi: 10.7717/peerj.2584
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. Dada2: high-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13(7):581–3.
pubmed: 27214047 pmcid: 4927377 doi: 10.1038/nmeth.3869
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.
pubmed: 19801464 pmcid: 2786419 doi: 10.1128/AEM.01541-09
Magoč T, Salzberg SL. Flash: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63.
pubmed: 21903629 pmcid: 3198573 doi: 10.1093/bioinformatics/btr507
Zhou Y-H, Gallins P. A review and tutorial of machine learning methods for microbiome host trait prediction. Front Genet. 2019;10:579.
pubmed: 31293616 pmcid: 6603228 doi: 10.3389/fgene.2019.00579
Chavira A, Wang EH-J, Mills RH. Meta-analysis of the autism gut microbiome identifies factors influencing study discrepancies and machine learning classification. bioRxiv 2022;2022–03
Wu T, Wang H, Lu W, Zhai Q, Zhang Q, Yuan W, Gu Z, Zhao J, Zhang H, Chen W. Potential of gut microbiome for detection of autism spectrum disorder. Microb Pathog. 2020;149: 104568.
pubmed: 33096147 doi: 10.1016/j.micpath.2020.104568
Aryal S, Alimadadi A, Manandhar I, Joe B, Cheng X. Machine learning strategy for gut microbiome-based diagnostic screening of cardiovascular disease. Hypertension. 2020;76(5):1555–62.
pubmed: 32909848 doi: 10.1161/HYPERTENSIONAHA.120.15885
Ge X, Zhang A, Li L, Sun Q, He J, Wu Y, Tan R, Pan Y, Zhao J, Xu Y, et al. Application of machine learning tools: potential and useful approach for the prediction of type 2 diabetes mellitus based on the gut microbiome profile. Exp Ther Med. 2022;23(4):1–10.
doi: 10.3892/etm.2022.11234
Balvers M, Deschasaux M, van den Born B-J, Zwinderman K, Nieuwdorp M, Levin E. Analyzing type 2 diabetes associations with the gut microbiome in individuals from two ethnic backgrounds living in the same geographic area. Nutrients. 2021;13(9):3289.
pubmed: 34579166 pmcid: 8468640 doi: 10.3390/nu13093289
Wang X, Xiao Y, Xu X, Guo L, Yu Y, Li N, Xu C. Characteristics of fecal microbiota and machine learning strategy for fecal invasive biomarkers in pediatric inflammatory bowel disease. Front Cell Infect Microbiol. 2021;11: 711884.
pubmed: 34950604 pmcid: 8688824 doi: 10.3389/fcimb.2021.711884
Manandhar I, Alimadadi A, Aryal S, Munroe PB, Joe B, Cheng X. Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol. 2021;320(3):328–37.
doi: 10.1152/ajpgi.00360.2020
Liu Y, Li W, Yang H, Zhang X, Wang W, Jia S, Xiang B, Wang Y, Miao L, Zhang H, et al. Leveraging 16s rrna microbiome sequencing data to identify bacterial signatures for irritable bowel syndrome. Front Cell Infect Microbiol. 2021;11: 645951.
pubmed: 34178718 pmcid: 8231010 doi: 10.3389/fcimb.2021.645951
Fukui H, Nishida A, Matsuda S, Kira F, Watanabe S, Kuriyama M, Kawakami K, Aikawa Y, Oda N, Arai K, et al. Usefulness of machine learning-based gut microbiome analysis for identifying patients with irritable bowels syndrome. J Clin Med. 2020;9(8):2403.
pubmed: 32727141 pmcid: 7464323 doi: 10.3390/jcm9082403
Pietrucci D, Teofani A, Unida V, Cerroni R, Biocca S, Stefani A, Desideri A. Can gut microbiota be a good predictor for Parkinson’s disease? A machine learning approach. Brain Sci. 2020;10(4):242.
pubmed: 32325848 pmcid: 7226159 doi: 10.3390/brainsci10040242
Wong CW, Yost SE, Lee JS, Gillece JD, Folkerts M, Reining L, Highlander SK, Eftekhari Z, Mortimer J, Yuan Y. Analysis of gut microbiome using explainable machine learning predicts risk of diarrhea associated with tyrosine kinase inhibitor neratinib: a pilot study. Front Oncol. 2021;11: 604584.
pubmed: 33796451 pmcid: 8008168 doi: 10.3389/fonc.2021.604584
Liang H, Jo J-H, Zhang Z, MacGibeny MA, Han J, Proctor DM, Taylor ME, Che Y, Juneau P, Apolo AB, et al. Predicting cancer immunotherapy response from gut microbiomes using machine learning models. Oncotarget. 2022;13:876.
pubmed: 35875611 pmcid: 9295706 doi: 10.18632/oncotarget.28252
Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning algorithm validation with a limited sample size. PLoS ONE. 2019;14(11):0224365.
doi: 10.1371/journal.pone.0224365
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11(12):2639–43.
pubmed: 28731476 pmcid: 5702726 doi: 10.1038/ismej.2017.119
Jeske JT, Gallert C. Microbiome analysis via otu and asv-based pipelines-a comparative interpretation of ecological data in wwtp systems. Bioengineering. 2022;9(4):146.
pubmed: 35447706 pmcid: 9029325 doi: 10.3390/bioengineering9040146
Loganathan T, et al. The influence of machine learning technologies in gut microbiome research and cancer studies-a review. Life Sci. 2022;121118
Namkung J. Machine learning methods for microbiome studies. J Microbiol. 2020;58:206–16.
pubmed: 32108316 doi: 10.1007/s12275-020-0066-8
Papin JA, Mac Gabhann F, Sauro HM, Nickerson D, Rampadarath A. Improving reproducibility in computational biology research. San Francisco: Public Library of Science; 2020.
doi: 10.1371/journal.pcbi.1007881
Lopez-Rincon A, Martinez-Archundia M, Martinez-Ruiz GU, Schoenhuth A, Tonda A. Automatic discovery of 100-mirna signature for cancer classification using ensemble feature selection. BMC Bioinform. 2019;20:1–17.
doi: 10.1186/s12859-019-3050-8
David MM, Tataru C, Daniels J, Schwartz J, Keating J, Hampton-Marcell J, Gottel N, Gilbert JA, Wall DP. Children with autism and their typically developing siblings differ in amplicon sequence variants and predicted functions of stool-associated microbes. Msystems. 2021;6(2):00193–20.
doi: 10.1128/mSystems.00193-20
Šimundić A-M. Measures of diagnostic accuracy: basic definitions. ejifcc. 2009;19(4):203.
pubmed: 27683318 pmcid: 4975285
Yap CX, Henders AK, Alvares GA, Wood DL, Krause L, Tyson GW, Restuadi R, Wallace L, McLaren T, Hansell NK, et al. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell. 2021;184(24):5916–31.
pubmed: 34767757 doi: 10.1016/j.cell.2021.10.015
Hsieh C-S, Rengarajan S, Kau A, Tarazona-Meza C, Nicholson A, Checkley W, Romero K, Hansel NN. Altered iga response to gut bacteria is associated with childhood asthma in peru. J Immunol. 2021;207(2):398–407.
pubmed: 34193598 doi: 10.4049/jimmunol.2001296
Chun Y, Do A, Grishina G, Grishin A, Fang G, Rose S, Spencer C, Vicencio A, Schadt E, Bunyavanich S. Integrative study of the upper and lower airway microbiome and transcriptome in asthma. JCI insight. 2020;5(5).
Pérez-Losada M, Castro-Nallar E, Laerte Boechat J, Delgado L, Azenha Rama T, Berrios-Farías V, Oliveira M. Nasal bacteriomes of patients with asthma and allergic rhinitis show unique composition, structure, function and interactions. Microorganisms. 2023;11(3):683.
pubmed: 36985258 pmcid: 10056468 doi: 10.3390/microorganisms11030683
Wang Y, LêCao K-A. Managing batch effects in microbiome data. Brief Bioinform. 2020;21(6):1954–70.
pubmed: 31776547 doi: 10.1093/bib/bbz105
Rincon AL, Kraneveld AD, Tonda A. Batch correction of genomic data in chronic fatigue syndrome using cma-es. In: Proceedings of the 2020 genetic and evolutionary computation conference companion, 2020;277–278
Lopez-Rincon A, Mendoza-Maldonado L, Martinez-Archundia M, Schönhuth A, Kraneveld AD, Garssen J, Tonda A. Machine learning-based ensemble recursive feature selection of circulating mirnas for cancer tumor classification. Cancers. 2020;12(7):1785.
pubmed: 32635415 pmcid: 7407482 doi: 10.3390/cancers12071785
Metselaar PI, Mendoza-Maldonado L, Li Yim AYF, Abarkan I, Henneman P, Te Velde AA, Schönhuth A, Bosch JA, Kraneveld AD, Lopez-Rincon A. Recursive ensemble feature selection provides a robust mrna expression signature for myalgic encephalomyelitis/chronic fatigue syndrome. Sci Rep. 2021;11(1):4541.
pubmed: 33633136 pmcid: 7907358 doi: 10.1038/s41598-021-83660-9
Kamphorst K, Lopez-Rincon A, Vlieger AM, Garssen J, van’t Riet E, van Elburg RM. Predictive factors for allergy at 4–6 years of age based on machine learning: a pilot study. PharmaNutrition. 2023;23: 100326.
doi: 10.1016/j.phanu.2022.100326
Benner M, Lopez-Rincon A, Thijssen S, Garssen J, Ferwerda G, Joosten I, van der Molen RG, Hogenkamp A. Antibiotic intervention affects maternal immunity during gestation in mice. Front Immunol. 2021;12: 685742.
pubmed: 34512624 pmcid: 8428513 doi: 10.3389/fimmu.2021.685742
Blankestijn JM, Lopez-Rincon A, Neerincx AH, Vijverberg SJ, Hashimoto S, Gorenjak M, Sardón Prado O, Corcuera-Elosegui P, Korta-Murua J, Pino-Yanes M, et al. Classifying asthma control using salivary and fecal bacterial microbiome in children with moderate-to-severe asthma. Pediatr Allergy Immunol. 2023;34(2):13919.
doi: 10.1111/pai.13919
Rojas-Velazquez D, Tonda A, Rodriguez-Guerra I, Kraneveld AD, Lopez-Rincon A. Multi-objective evolutionary discretization of gene expression profiles: application to covid-19 severity prediction. In: International conference on the applications of evolutionary computation (part of EvoStar), 2023;703–717
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.
Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC Genom. 2020;21(1):1–13.
doi: 10.1186/s12864-019-6413-7
Ding X, Xu Y, Zhang X, Zhang L, Duan G, Song C, Li Z, Yang Y, Wang Y, Wang X, et al. Gut microbiota changes in patients with autism spectrum disorders. J Psychiatr Res. 2020;129:149–59.
pubmed: 32912596 doi: 10.1016/j.jpsychires.2020.06.032
Zou R, Xu F, Wang Y, Duan M, Guo M, Zhang Q, Zhao H, Zheng H. Changes in the gut microbiota of children with autism spectrum disorder. Autism Res. 2020;13(9):1614–25.
pubmed: 32830918 doi: 10.1002/aur.2358
Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature. 2017;551(7681):507–11.
pubmed: 29143816 doi: 10.1038/nature24460
Yamada T, Hino S, Iijima H, Genda T, Aoki R, Nagata R, Han K-H, Hirota M, Kinashi Y, Oguchi H, et al. Mucin o-glycans facilitate symbiosynthesis to maintain gut immune homeostasis. EBioMedicine. 2019;48:513–25.
pubmed: 31521614 pmcid: 6838389 doi: 10.1016/j.ebiom.2019.09.008
Imai J, Ichikawa H, Kitamoto S, Golob JL, Kaneko M, Nagata J, Takahashi M, Gillilland MG III, Tanaka R, Nagao-Kitamoto H, et al. A potential pathogenic association between periodontal disease and Crohn’s disease. JCI Insight. 2021;6(23).
De La Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS. Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54–62.
pubmed: 27999002 doi: 10.2337/dc16-1324
Ahmad A, Yang W, Chen G, Shafiq M, Javed S, Ali Zaidi SS, Shahid R, Liu C, Bokhari H. Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS ONE. 2019;14(12):0226372.
doi: 10.1371/journal.pone.0226372
Saleem A, Ikram A, Dikareva E, Lahtinen E, Matharu D, Pajari A-M, de Vos WM, Hasan F, Salonen A, Jian C. Unique pakistani gut microbiota highlights population-specific microbiota signatures of type 2 diabetes mellitus. Gut Microbes. 2022;14(1):2142009.
pubmed: 36322821 pmcid: 9635555 doi: 10.1080/19490976.2022.2142009

Auteurs

David Rojas-Velazquez (D)

Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Utrecht, The Netherlands. e.d.rojasvelazquez@uu.nl.
Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. e.d.rojasvelazquez@uu.nl.

Sarah Kidwai (S)

Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Utrecht, The Netherlands.

Aletta D Kraneveld (AD)

Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Utrecht, The Netherlands.
Department of Neuroscience, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Alberto Tonda (A)

UMR 518 MIA - PS, INRAE, Institut des Systèmes Complexes de Paris, Île - de - France (ISC-PIF) - UAR 3611 CNRS, Université Paris-Saclay, Paris, France.

Daniel Oberski (D)

Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.

Johan Garssen (J)

Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Utrecht, The Netherlands.
Global Centre of Excellence Immunology, Danone Nutricia Research, Utrecht, The Netherlands.

Alejandro Lopez-Rincon (A)

Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Utrecht, The Netherlands.
Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.

Classifications MeSH