Methodology for biomarker discovery with reproducibility in microbiome data using machine learning.
Machine learning
Microbiome
Reproducibility
Journal
BMC bioinformatics
ISSN: 1471-2105
Titre abrégé: BMC Bioinformatics
Pays: England
ID NLM: 100965194
Informations de publication
Date de publication:
15 Jan 2024
15 Jan 2024
Historique:
received:
03
12
2023
accepted:
04
01
2024
medline:
16
1
2024
pubmed:
16
1
2024
entrez:
15
1
2024
Statut:
epublish
Résumé
In recent years, human microbiome studies have received increasing attention as this field is considered a potential source for clinical applications. With the advancements in omics technologies and AI, research focused on the discovery for potential biomarkers in the human microbiome using machine learning tools has produced positive outcomes. Despite the promising results, several issues can still be found in these studies such as datasets with small number of samples, inconsistent results, lack of uniform processing and methodologies, and other additional factors lead to lack of reproducibility in biomedical research. In this work, we propose a methodology that combines the DADA2 pipeline for 16s rRNA sequences processing and the Recursive Ensemble Feature Selection (REFS) in multiple datasets to increase reproducibility and obtain robust and reliable results in biomedical research. Three experiments were performed analyzing microbiome data from patients/cases in Inflammatory Bowel Disease (IBD), Autism Spectrum Disorder (ASD), and Type 2 Diabetes (T2D). In each experiment, we found a biomarker signature in one dataset and applied to 2 other as further validation. The effectiveness of the proposed methodology was compared with other feature selection methods such as K-Best with F-score and random selection as a base line. The Area Under the Curve (AUC) was employed as a measure of diagnostic accuracy and used as a metric for comparing the results of the proposed methodology with other feature selection methods. Additionally, we use the Matthews Correlation Coefficient (MCC) as a metric to evaluate the performance of the methodology as well as for comparison with other feature selection methods. We developed a methodology for reproducible biomarker discovery for 16s rRNA microbiome sequence analysis, addressing the issues related with data dimensionality, inconsistent results and validation across independent datasets. The findings from the three experiments, across 9 different datasets, show that the proposed methodology achieved higher accuracy compared to other feature selection methods. This methodology is a first approach to increase reproducibility, to provide robust and reliable results.
Sections du résumé
BACKGROUND
BACKGROUND
In recent years, human microbiome studies have received increasing attention as this field is considered a potential source for clinical applications. With the advancements in omics technologies and AI, research focused on the discovery for potential biomarkers in the human microbiome using machine learning tools has produced positive outcomes. Despite the promising results, several issues can still be found in these studies such as datasets with small number of samples, inconsistent results, lack of uniform processing and methodologies, and other additional factors lead to lack of reproducibility in biomedical research. In this work, we propose a methodology that combines the DADA2 pipeline for 16s rRNA sequences processing and the Recursive Ensemble Feature Selection (REFS) in multiple datasets to increase reproducibility and obtain robust and reliable results in biomedical research.
RESULTS
RESULTS
Three experiments were performed analyzing microbiome data from patients/cases in Inflammatory Bowel Disease (IBD), Autism Spectrum Disorder (ASD), and Type 2 Diabetes (T2D). In each experiment, we found a biomarker signature in one dataset and applied to 2 other as further validation. The effectiveness of the proposed methodology was compared with other feature selection methods such as K-Best with F-score and random selection as a base line. The Area Under the Curve (AUC) was employed as a measure of diagnostic accuracy and used as a metric for comparing the results of the proposed methodology with other feature selection methods. Additionally, we use the Matthews Correlation Coefficient (MCC) as a metric to evaluate the performance of the methodology as well as for comparison with other feature selection methods.
CONCLUSIONS
CONCLUSIONS
We developed a methodology for reproducible biomarker discovery for 16s rRNA microbiome sequence analysis, addressing the issues related with data dimensionality, inconsistent results and validation across independent datasets. The findings from the three experiments, across 9 different datasets, show that the proposed methodology achieved higher accuracy compared to other feature selection methods. This methodology is a first approach to increase reproducibility, to provide robust and reliable results.
Identifiants
pubmed: 38225565
doi: 10.1186/s12859-024-05639-3
pii: 10.1186/s12859-024-05639-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26Informations de copyright
© 2024. The Author(s).
Références
Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67(9):1716–25.
pubmed: 29934437
doi: 10.1136/gutjnl-2018-316723
Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, Che T, Zhang C. Alteration of gut microbiota in inflammatory bowel disease (ibd): Cause or consequence? ibd treatment targeting the gut microbiome. Pathogens. 2019;8(3):126.
pubmed: 31412603
pmcid: 6789542
doi: 10.3390/pathogens8030126
Dickson I. Diagnosing ibd with the gut microbiome. Nat Rev Gastroenterol Hepatol. 2017;14(4):195–195.
pubmed: 28250469
doi: 10.1038/nrgastro.2017.25
McIlroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold G. the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharmacol Ther. 2018;47(1):26–42.
pubmed: 29034981
doi: 10.1111/apt.14384
Michail S, Durbin M, Turner D, Griffiths AM, Mack DR, Hyams J, Leleiko N, Kenche H, Stolfi A, Wine E. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis. 2012;18(10):1799–808.
pubmed: 22170749
doi: 10.1002/ibd.22860
Li Q, Chang Y, Zhang K, Chen H, Tao S, Zhang Z. Implication of the gut microbiome composition of type 2 diabetic patients from northern china. Sci Rep. 2020;10(1):1–8.
Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: Where we are and where to go? J Nutr Biochem. 2019;63:101–8.
pubmed: 30366260
doi: 10.1016/j.jnutbio.2018.10.003
Aydin Ö, Nieuwdorp M, Gerdes V. The gut microbiome as a target for the treatment of type 2 diabetes. Curr DiabRep. 2018;18:1–11.
Reitmeier S, Kiessling S, Clavel T, List M, Almeida EL, Ghosh TS, Neuhaus K, Grallert H, Linseisen J, Skurk T, et al. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe. 2020;28(2):258–72.
pubmed: 32619440
doi: 10.1016/j.chom.2020.06.004
Pulikkan J, Mazumder A, Grace T. Role of the gut microbiome in autism spectrum disorders. Rev Biomark Stud Psychiatr Neurodegener Disorders 2019;253–269
Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci 2017;120
Fowlie G, Cohen N, Ming X. The perturbance of microbiome and gut-brain axis in autism spectrum disorders. Int J Mol Sci. 2018;19(8):2251.
pubmed: 30071612
pmcid: 6121241
doi: 10.3390/ijms19082251
Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiat. 2017;81(5):411–23.
pubmed: 27773355
doi: 10.1016/j.biopsych.2016.08.024
Liu Y, Lau HC-H, Cheng WY, Yu J. Gut microbiome in colorectal cancer: clinical diagnosis and treatment. Genom Proteom Bioinform. 2022;21:84–96.
doi: 10.1016/j.gpb.2022.07.002
Zhang Y, Shen J, Shi X, Du Y, Niu Y, Jin G, Wang Z, Lyu J. Gut microbiome analysis as a predictive marker for the gastric cancer patients. Appl Microbiol Biotechnol. 2021;105:803–14.
pubmed: 33404833
doi: 10.1007/s00253-020-11043-7
Deng T, Li J, He B, Chen B, Liu F, Chen Z, Zheng J, Shi Z, Zhang T, Deng L, et al. Gut microbiome alteration as a diagnostic tool and associated with inflammatory response marker in primary liver cancer. Hep Intl. 2022;16(1):99–111.
doi: 10.1007/s12072-021-10279-3
Zhao F, An R, Wang L, Shan J, Wang X. Specific gut microbiome and serum metabolome changes in lung cancer patients. Front Cell Infect Microbiol. 2021;11: 725284.
pubmed: 34527604
pmcid: 8435782
doi: 10.3389/fcimb.2021.725284
Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33(4):570–80.
pubmed: 29634945
pmcid: 6529202
doi: 10.1016/j.ccell.2018.03.015
Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8.
pubmed: 28530702
doi: 10.1038/nm.4345
Yang Y, Tian J, Yang B. Targeting gut microbiome: a novel and potential therapy for autism. Life Sci. 2018;194:111–9.
pubmed: 29277311
doi: 10.1016/j.lfs.2017.12.027
Knox NC, Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiome as a target for ibd treatment: Are we there yet? Curr Treat Options Gastroenterol. 2019;17:115–26.
pubmed: 30661163
doi: 10.1007/s11938-019-00221-w
Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31(1):69.
pubmed: 25394236
pmcid: 4290017
doi: 10.1097/MOG.0000000000000139
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. Reproducible, interactive, scalable and extensible microbiome data science using qiime 2. Nat Biotechnol. 2019;37(8):852–7.
pubmed: 31341288
pmcid: 7015180
doi: 10.1038/s41587-019-0209-9
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. Vsearch: a versatile open source tool for metagenomics. PeerJ. 2016;4:2584.
doi: 10.7717/peerj.2584
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. Dada2: high-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13(7):581–3.
pubmed: 27214047
pmcid: 4927377
doi: 10.1038/nmeth.3869
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.
pubmed: 19801464
pmcid: 2786419
doi: 10.1128/AEM.01541-09
Magoč T, Salzberg SL. Flash: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63.
pubmed: 21903629
pmcid: 3198573
doi: 10.1093/bioinformatics/btr507
Zhou Y-H, Gallins P. A review and tutorial of machine learning methods for microbiome host trait prediction. Front Genet. 2019;10:579.
pubmed: 31293616
pmcid: 6603228
doi: 10.3389/fgene.2019.00579
Chavira A, Wang EH-J, Mills RH. Meta-analysis of the autism gut microbiome identifies factors influencing study discrepancies and machine learning classification. bioRxiv 2022;2022–03
Wu T, Wang H, Lu W, Zhai Q, Zhang Q, Yuan W, Gu Z, Zhao J, Zhang H, Chen W. Potential of gut microbiome for detection of autism spectrum disorder. Microb Pathog. 2020;149: 104568.
pubmed: 33096147
doi: 10.1016/j.micpath.2020.104568
Aryal S, Alimadadi A, Manandhar I, Joe B, Cheng X. Machine learning strategy for gut microbiome-based diagnostic screening of cardiovascular disease. Hypertension. 2020;76(5):1555–62.
pubmed: 32909848
doi: 10.1161/HYPERTENSIONAHA.120.15885
Ge X, Zhang A, Li L, Sun Q, He J, Wu Y, Tan R, Pan Y, Zhao J, Xu Y, et al. Application of machine learning tools: potential and useful approach for the prediction of type 2 diabetes mellitus based on the gut microbiome profile. Exp Ther Med. 2022;23(4):1–10.
doi: 10.3892/etm.2022.11234
Balvers M, Deschasaux M, van den Born B-J, Zwinderman K, Nieuwdorp M, Levin E. Analyzing type 2 diabetes associations with the gut microbiome in individuals from two ethnic backgrounds living in the same geographic area. Nutrients. 2021;13(9):3289.
pubmed: 34579166
pmcid: 8468640
doi: 10.3390/nu13093289
Wang X, Xiao Y, Xu X, Guo L, Yu Y, Li N, Xu C. Characteristics of fecal microbiota and machine learning strategy for fecal invasive biomarkers in pediatric inflammatory bowel disease. Front Cell Infect Microbiol. 2021;11: 711884.
pubmed: 34950604
pmcid: 8688824
doi: 10.3389/fcimb.2021.711884
Manandhar I, Alimadadi A, Aryal S, Munroe PB, Joe B, Cheng X. Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol. 2021;320(3):328–37.
doi: 10.1152/ajpgi.00360.2020
Liu Y, Li W, Yang H, Zhang X, Wang W, Jia S, Xiang B, Wang Y, Miao L, Zhang H, et al. Leveraging 16s rrna microbiome sequencing data to identify bacterial signatures for irritable bowel syndrome. Front Cell Infect Microbiol. 2021;11: 645951.
pubmed: 34178718
pmcid: 8231010
doi: 10.3389/fcimb.2021.645951
Fukui H, Nishida A, Matsuda S, Kira F, Watanabe S, Kuriyama M, Kawakami K, Aikawa Y, Oda N, Arai K, et al. Usefulness of machine learning-based gut microbiome analysis for identifying patients with irritable bowels syndrome. J Clin Med. 2020;9(8):2403.
pubmed: 32727141
pmcid: 7464323
doi: 10.3390/jcm9082403
Pietrucci D, Teofani A, Unida V, Cerroni R, Biocca S, Stefani A, Desideri A. Can gut microbiota be a good predictor for Parkinson’s disease? A machine learning approach. Brain Sci. 2020;10(4):242.
pubmed: 32325848
pmcid: 7226159
doi: 10.3390/brainsci10040242
Wong CW, Yost SE, Lee JS, Gillece JD, Folkerts M, Reining L, Highlander SK, Eftekhari Z, Mortimer J, Yuan Y. Analysis of gut microbiome using explainable machine learning predicts risk of diarrhea associated with tyrosine kinase inhibitor neratinib: a pilot study. Front Oncol. 2021;11: 604584.
pubmed: 33796451
pmcid: 8008168
doi: 10.3389/fonc.2021.604584
Liang H, Jo J-H, Zhang Z, MacGibeny MA, Han J, Proctor DM, Taylor ME, Che Y, Juneau P, Apolo AB, et al. Predicting cancer immunotherapy response from gut microbiomes using machine learning models. Oncotarget. 2022;13:876.
pubmed: 35875611
pmcid: 9295706
doi: 10.18632/oncotarget.28252
Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning algorithm validation with a limited sample size. PLoS ONE. 2019;14(11):0224365.
doi: 10.1371/journal.pone.0224365
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11(12):2639–43.
pubmed: 28731476
pmcid: 5702726
doi: 10.1038/ismej.2017.119
Jeske JT, Gallert C. Microbiome analysis via otu and asv-based pipelines-a comparative interpretation of ecological data in wwtp systems. Bioengineering. 2022;9(4):146.
pubmed: 35447706
pmcid: 9029325
doi: 10.3390/bioengineering9040146
Loganathan T, et al. The influence of machine learning technologies in gut microbiome research and cancer studies-a review. Life Sci. 2022;121118
Namkung J. Machine learning methods for microbiome studies. J Microbiol. 2020;58:206–16.
pubmed: 32108316
doi: 10.1007/s12275-020-0066-8
Papin JA, Mac Gabhann F, Sauro HM, Nickerson D, Rampadarath A. Improving reproducibility in computational biology research. San Francisco: Public Library of Science; 2020.
doi: 10.1371/journal.pcbi.1007881
Lopez-Rincon A, Martinez-Archundia M, Martinez-Ruiz GU, Schoenhuth A, Tonda A. Automatic discovery of 100-mirna signature for cancer classification using ensemble feature selection. BMC Bioinform. 2019;20:1–17.
doi: 10.1186/s12859-019-3050-8
David MM, Tataru C, Daniels J, Schwartz J, Keating J, Hampton-Marcell J, Gottel N, Gilbert JA, Wall DP. Children with autism and their typically developing siblings differ in amplicon sequence variants and predicted functions of stool-associated microbes. Msystems. 2021;6(2):00193–20.
doi: 10.1128/mSystems.00193-20
Šimundić A-M. Measures of diagnostic accuracy: basic definitions. ejifcc. 2009;19(4):203.
pubmed: 27683318
pmcid: 4975285
Yap CX, Henders AK, Alvares GA, Wood DL, Krause L, Tyson GW, Restuadi R, Wallace L, McLaren T, Hansell NK, et al. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell. 2021;184(24):5916–31.
pubmed: 34767757
doi: 10.1016/j.cell.2021.10.015
Hsieh C-S, Rengarajan S, Kau A, Tarazona-Meza C, Nicholson A, Checkley W, Romero K, Hansel NN. Altered iga response to gut bacteria is associated with childhood asthma in peru. J Immunol. 2021;207(2):398–407.
pubmed: 34193598
doi: 10.4049/jimmunol.2001296
Chun Y, Do A, Grishina G, Grishin A, Fang G, Rose S, Spencer C, Vicencio A, Schadt E, Bunyavanich S. Integrative study of the upper and lower airway microbiome and transcriptome in asthma. JCI insight. 2020;5(5).
Pérez-Losada M, Castro-Nallar E, Laerte Boechat J, Delgado L, Azenha Rama T, Berrios-Farías V, Oliveira M. Nasal bacteriomes of patients with asthma and allergic rhinitis show unique composition, structure, function and interactions. Microorganisms. 2023;11(3):683.
pubmed: 36985258
pmcid: 10056468
doi: 10.3390/microorganisms11030683
Wang Y, LêCao K-A. Managing batch effects in microbiome data. Brief Bioinform. 2020;21(6):1954–70.
pubmed: 31776547
doi: 10.1093/bib/bbz105
Rincon AL, Kraneveld AD, Tonda A. Batch correction of genomic data in chronic fatigue syndrome using cma-es. In: Proceedings of the 2020 genetic and evolutionary computation conference companion, 2020;277–278
Lopez-Rincon A, Mendoza-Maldonado L, Martinez-Archundia M, Schönhuth A, Kraneveld AD, Garssen J, Tonda A. Machine learning-based ensemble recursive feature selection of circulating mirnas for cancer tumor classification. Cancers. 2020;12(7):1785.
pubmed: 32635415
pmcid: 7407482
doi: 10.3390/cancers12071785
Metselaar PI, Mendoza-Maldonado L, Li Yim AYF, Abarkan I, Henneman P, Te Velde AA, Schönhuth A, Bosch JA, Kraneveld AD, Lopez-Rincon A. Recursive ensemble feature selection provides a robust mrna expression signature for myalgic encephalomyelitis/chronic fatigue syndrome. Sci Rep. 2021;11(1):4541.
pubmed: 33633136
pmcid: 7907358
doi: 10.1038/s41598-021-83660-9
Kamphorst K, Lopez-Rincon A, Vlieger AM, Garssen J, van’t Riet E, van Elburg RM. Predictive factors for allergy at 4–6 years of age based on machine learning: a pilot study. PharmaNutrition. 2023;23: 100326.
doi: 10.1016/j.phanu.2022.100326
Benner M, Lopez-Rincon A, Thijssen S, Garssen J, Ferwerda G, Joosten I, van der Molen RG, Hogenkamp A. Antibiotic intervention affects maternal immunity during gestation in mice. Front Immunol. 2021;12: 685742.
pubmed: 34512624
pmcid: 8428513
doi: 10.3389/fimmu.2021.685742
Blankestijn JM, Lopez-Rincon A, Neerincx AH, Vijverberg SJ, Hashimoto S, Gorenjak M, Sardón Prado O, Corcuera-Elosegui P, Korta-Murua J, Pino-Yanes M, et al. Classifying asthma control using salivary and fecal bacterial microbiome in children with moderate-to-severe asthma. Pediatr Allergy Immunol. 2023;34(2):13919.
doi: 10.1111/pai.13919
Rojas-Velazquez D, Tonda A, Rodriguez-Guerra I, Kraneveld AD, Lopez-Rincon A. Multi-objective evolutionary discretization of gene expression profiles: application to covid-19 severity prediction. In: International conference on the applications of evolutionary computation (part of EvoStar), 2023;703–717
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.
Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC Genom. 2020;21(1):1–13.
doi: 10.1186/s12864-019-6413-7
Ding X, Xu Y, Zhang X, Zhang L, Duan G, Song C, Li Z, Yang Y, Wang Y, Wang X, et al. Gut microbiota changes in patients with autism spectrum disorders. J Psychiatr Res. 2020;129:149–59.
pubmed: 32912596
doi: 10.1016/j.jpsychires.2020.06.032
Zou R, Xu F, Wang Y, Duan M, Guo M, Zhang Q, Zhao H, Zheng H. Changes in the gut microbiota of children with autism spectrum disorder. Autism Res. 2020;13(9):1614–25.
pubmed: 32830918
doi: 10.1002/aur.2358
Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature. 2017;551(7681):507–11.
pubmed: 29143816
doi: 10.1038/nature24460
Yamada T, Hino S, Iijima H, Genda T, Aoki R, Nagata R, Han K-H, Hirota M, Kinashi Y, Oguchi H, et al. Mucin o-glycans facilitate symbiosynthesis to maintain gut immune homeostasis. EBioMedicine. 2019;48:513–25.
pubmed: 31521614
pmcid: 6838389
doi: 10.1016/j.ebiom.2019.09.008
Imai J, Ichikawa H, Kitamoto S, Golob JL, Kaneko M, Nagata J, Takahashi M, Gillilland MG III, Tanaka R, Nagao-Kitamoto H, et al. A potential pathogenic association between periodontal disease and Crohn’s disease. JCI Insight. 2021;6(23).
De La Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS. Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54–62.
pubmed: 27999002
doi: 10.2337/dc16-1324
Ahmad A, Yang W, Chen G, Shafiq M, Javed S, Ali Zaidi SS, Shahid R, Liu C, Bokhari H. Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS ONE. 2019;14(12):0226372.
doi: 10.1371/journal.pone.0226372
Saleem A, Ikram A, Dikareva E, Lahtinen E, Matharu D, Pajari A-M, de Vos WM, Hasan F, Salonen A, Jian C. Unique pakistani gut microbiota highlights population-specific microbiota signatures of type 2 diabetes mellitus. Gut Microbes. 2022;14(1):2142009.
pubmed: 36322821
pmcid: 9635555
doi: 10.1080/19490976.2022.2142009