Inflammatory recruitment of healthy hematopoietic stem and progenitor cells in the acute myeloid leukemia niche.


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
16 Jan 2024
Historique:
received: 03 08 2023
accepted: 04 01 2024
revised: 21 12 2023
medline: 17 1 2024
pubmed: 17 1 2024
entrez: 16 1 2024
Statut: aheadofprint

Résumé

Inflammation in the bone marrow (BM) microenvironment is a constitutive component of leukemogenesis in acute myeloid leukemia (AML). Current evidence suggests that both leukemic blasts and stroma secrete proinflammatory factors that actively suppress the function of healthy hematopoietic stem and progenitor cells (HSPCs). HSPCs are also cellular components of the innate immune system, and we reasoned that they may actively propagate the inflammation in the leukemic niche. In two separate congenic models of AML we confirm by evaluation of the BM plasma secretome and HSPC-selective single-cell RNA sequencing (scRNA-Seq) that multipotent progenitors and long-lived stem cells adopt inflammatory gene expression programs, even at low leukemic infiltration of the BM. In particular, we observe interferon gamma (IFN-γ) pathway activation, along with secretion of its chemokine target, CXCL10. We show that AML-derived nanometer-sized extracellular vesicles (EV

Identifiants

pubmed: 38228679
doi: 10.1038/s41375-024-02136-7
pii: 10.1038/s41375-024-02136-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Alex's Lemonade Stand Foundation for Childhood Cancer (Alex's Lemonade Stand Foundation)
ID : 21-23996

Informations de copyright

© 2024. The Author(s).

Références

De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J 2016;6:e441.
pubmed: 27367478 pmcid: 5030376 doi: 10.1038/bcj.2016.50
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA: A Cancer J Clin. 2022;72:7–33.
Hornick NI, Doron B, Abdelhamed S, Huan J, Harrington CA, Shen R, et al. AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB. Sci Signal. 2016;9:ra88.
pubmed: 27601730 doi: 10.1126/scisignal.aaf2797
Abdelhamed S, Butler JT, Doron B, Halse A, Nemecek E, Wilmarth PA, et al. Extracellular vesicles impose quiescence on residual hematopoietic stem cells in the leukemic niche. EMBO Rep. 2019;20:e47546.
pubmed: 31267709 pmcid: 6607014 doi: 10.15252/embr.201847546
Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): A focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev. 2018;43:8–15.
pubmed: 30181021 doi: 10.1016/j.cytogfr.2018.08.004
Kristinsson SY, Björkholm M, Hultcrantz M, Derolf ÅR, Landgren O, Goldin LR. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol. 2011;29:2897–903.
pubmed: 21690473 pmcid: 3138717 doi: 10.1200/JCO.2011.34.8540
Pietras EM. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood .2017;130:1693–8.
pubmed: 28874349 pmcid: 5639485 doi: 10.1182/blood-2017-06-780882
Schepers K, Campbell TB, Passegué E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell. 2015;16:254–67.
pubmed: 25748932 pmcid: 4391962 doi: 10.1016/j.stem.2015.02.014
Zhang TY, Dutta R, Benard B, Zhao F, Yin R, Majeti R. IL-6 blockade reverses bone marrow failure induced by human acute myeloid leukemia. Sci Transl Med. 2020;12:eaax5104.
pubmed: 32269167 pmcid: 7266679 doi: 10.1126/scitranslmed.aax5104
Zhao JL, Ma C, O’Connell MR, Mehta A, DiLoreto R, Heath JR, et al. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell. 2014;14:445–59.
pubmed: 24561084 pmcid: 4119790 doi: 10.1016/j.stem.2014.01.007
Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, et al. Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood, J Am Soc Hematol 2001;98:2301–7.
Carey A, Edwards DK, Eide CA, Newell L, Traer E, Medeiros BC, et al. Identification of Interleukin-1 by Functional Screening as a Key Mediator of Cellular Expansion and Disease Progression in Acute Myeloid Leukemia. Cell Rep. 2017;18:3204–18.
pubmed: 28355571 pmcid: 5437102 doi: 10.1016/j.celrep.2017.03.018
Zambetti NA, Ping Z, Chen S, Kenswil KJ, Mylona MA, Sanders MA, et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell. 2016;19:613–27.
pubmed: 27666011 doi: 10.1016/j.stem.2016.08.021
Essers MAG, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature .2009;458:904.
pubmed: 19212321 doi: 10.1038/nature07815
Butler JT, Abdelhamed S, Kurre P. Extracellular vesicles in the hematopoietic microenvironment. Haematologica .2018;103:382–94.
pubmed: 29439185 pmcid: 5830368 doi: 10.3324/haematol.2017.183335
Ortiz A, Gui J, Zahedi F, Yu P, Cho C, Bhattacharya S, et al. An interferon-driven oxysterol-based defense against tumor-derived extracellular vesicles. Cancer Cell 2019;35:33–45. e6.
pubmed: 30645975 pmcid: 6336114 doi: 10.1016/j.ccell.2018.12.001
Kumar B, Garcia M, Weng L, Jung X, Murakami JL, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia .2018;32:575–87.
pubmed: 28816238 doi: 10.1038/leu.2017.259
Doron B, Abdelhamed S, Butler JT, Hashmi SK, Horton TM, Kurre P. Transmissible ER stress reconfigures the AML bone marrow compartment. Leukemia. 2019;33:918–30.
pubmed: 30206307 doi: 10.1038/s41375-018-0254-2
Pietras EM, Lakshminarasimhan R, Techner J-M, Fong S, Flach J, Binnewies M, et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med. 2014;211:245–62.
pubmed: 24493802 pmcid: 3920566 doi: 10.1084/jem.20131043
Ju J-M, Jung MH, Nam G, Kim W, Oh S, Kim HD, et al. Escape from thymic deletion and anti-leukemic effects of T cells specific for hematopoietic cell-restricted antigen. Nat Commun. 2018;9:225.
pubmed: 29335408 pmcid: 5768767 doi: 10.1038/s41467-017-02665-z
Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature 2018;562:605–9.
pubmed: 30333625 pmcid: 6296374 doi: 10.1038/s41586-018-0615-z
Yan F, Shen N, Pang JX, Zhang YW, Rao EY, Bode AM, et al. Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells. Leukemia .2017;31:1434–42.
pubmed: 27885273 doi: 10.1038/leu.2016.349
Li J-M, Petersen CT, Li J-X, Panjwani R, Chandra DJ, Giver CR, et al. Modulation of immune checkpoints and graft-versus-leukemia in allogeneic transplants by antagonizing vasoactive intestinal peptide signaling. Cancer Res. 2016;76:6802–15.
pubmed: 27671676 pmcid: 5135614 doi: 10.1158/0008-5472.CAN-16-0427
Curran E, Chen X, Corrales L, Kline DE, others. STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep. (2016).
Ratajczak M, Adamiak M, Deptala A, Domagala-Kulawik J, Ratajczak J, Kucia M. Myeloablative Conditioning for Transplantation Induces State of Sterile Inflammation in the Bone Marrow: Implications for Optimizing Homing and Engraftment of Hematopoietic Stem Cells. Antioxidant & Redox Signaling. 2022;37:1254–65.
doi: 10.1089/ars.2022.0042
Pietras EM, Reynaud D, Kang Y-A, Carlin D, Calero-Nieto FJ, Leavitt AD, et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell. 2015;17:35–46.
pubmed: 26095048 pmcid: 4542150 doi: 10.1016/j.stem.2015.05.003
Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature. 2006;442:818–22.
pubmed: 16862118 doi: 10.1038/nature04980
Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 2011;20:66–78.
pubmed: 21741597 pmcid: 3329803 doi: 10.1016/j.ccr.2011.06.010
Stavropoulou V, Kaspar S, Brault L, Sanders MA, Juge S, Morettini S, et al. MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome. Cancer Cell. 2016;30:43–58.
pubmed: 27344946 doi: 10.1016/j.ccell.2016.05.011
Chen X, Burkhardt DB, Hartman AA, Hu X, Eastman AE, Sun C, et al. MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors. Nat Commun. 2019;10:5767.
pubmed: 31852898 pmcid: 6920141 doi: 10.1038/s41467-019-13666-5
Kelly-Scumpia KM, Scumpia PO, Delano MJ, Weinstein JS, Cuenca AG, Wynn JL, et al. Type I interferon signaling in hematopoietic cells is required for survival in mouse polymicrobial sepsis by regulating CXCL10. J Exp Med. 2010;207:319–26.
pubmed: 20071504 pmcid: 2822595 doi: 10.1084/jem.20091959
Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature. 2010;465:793–7.
pubmed: 20535209 pmcid: 2935898 doi: 10.1038/nature09135
Kanayama M, Izumi Y, Yamauchi Y, Kuroda S, Shin T, Ishikawa S, et al. CD86-based analysis enables observation of bona fide hematopoietic responses. Blood. 2020;136:1144–54.
pubmed: 32438398 doi: 10.1182/blood.2020004923
Cai Z, Kotzin JJ, Ramdas B, Chen S, Nelanuthala S, Palam LR, et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell 2018;23:833–49.
pubmed: 30526882 pmcid: 6317370 doi: 10.1016/j.stem.2018.10.013
Welner RS, Amabile G, Bararia D, Czibere A, Yang H, Zhang H, et al. Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell 2015;27:671–81.
pubmed: 25965572 pmcid: 4447336 doi: 10.1016/j.ccell.2015.04.004
Kleppe M, Kwak M, Koppikar P, Riester M, Keller M, Bastian L, et al. JAK–STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic responseJAK–STAT pathway activation in malignant and nonmalignant cells in MPN. Cancer Discov. 2015;5:316–31.
pubmed: 25572172 pmcid: 4355105 doi: 10.1158/2159-8290.CD-14-0736
Holicek P, Truxova I, Rakova J, Salek C, Hensler M, Kovar M, et al. Type I interferon signaling in malignant blasts contributes to treatment efficacy in AML patients. Cell Death Dis. 2023;14:209.
pubmed: 36964168 pmcid: 10039058 doi: 10.1038/s41419-023-05728-w
de Laval B, Maurizio J, Kandalla P, Brisou G, Simonnet L, Huber C, et al. C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell. 2020;26:657–74.
pubmed: 32169166 doi: 10.1016/j.stem.2020.01.017
Abdelhamed S, Butler JT, Jung S, Chen D-W, Jenkins G, Gao L, et al. Rational biomarker development for the early and minimally invasive monitoring of AML. Blood Adv. 2021;5:4515–20.
pubmed: 34587228 pmcid: 8579272 doi: 10.1182/bloodadvances.2021004621
Bogeska R, Mikecin A-M, Kaschutnig P, Fawaz M, Büchler-Schäff M, Le D, et al. Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell. 2022;29:1273–84.e8.
pubmed: 35858618 pmcid: 9357150 doi: 10.1016/j.stem.2022.06.012
Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013;13:285–99.
pubmed: 23850243 pmcid: 3769504 doi: 10.1016/j.stem.2013.06.009
Miraki-Moud F, Anjos-Afonso F, Hodby KA, Griessinger E, Rosignoli G, Lillington D, et al. Acute myeloid leukemia does not deplete normal hematopoietic stem cells but induces cytopenias by impeding their differentiation. Proc Natl Acad Sci. 2013;110:13576–81.
pubmed: 23901108 pmcid: 3746910 doi: 10.1073/pnas.1301891110
Boyd AL, Reid JC, Salci KR, Aslostovar L, Benoit YD, Shapovalova Z, et al. Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nat Cell Biol. 2017;19:1336–47.
pubmed: 29035359 doi: 10.1038/ncb3625
Akinduro O, Weber TS, Ang H, Haltalli M, Ruivo N, Duarte D, et al. Proliferation dynamics of acute myeloid leukaemia and haematopoietic progenitors competing for bone marrow space. Nat Commun. 2018;9:519.
pubmed: 29410432 pmcid: 5802720 doi: 10.1038/s41467-017-02376-5
Corces-Zimmerman MR, Hong W-J, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci. 2014;111:2548–53.
pubmed: 24550281 pmcid: 3932921 doi: 10.1073/pnas.1324297111
Caiado F, Pietras EM, Manz MG. Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection. J Exp Med. 2021;218:e20201541.
pubmed: 34129016 pmcid: 8210622 doi: 10.1084/jem.20201541
Hormaechea-Agulla D, Matatall KA, Le DT, Kain B, Long X, Kus P, et al. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell. 2021;28:1428–42.
pubmed: 33743191 pmcid: 8349829 doi: 10.1016/j.stem.2021.03.002
Matatall KA, Jeong M, Chen S, Sun D, Chen F, Mo Q, et al. Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation. Cell Rep. 2016;17:2584–95.
pubmed: 27926863 pmcid: 5161248 doi: 10.1016/j.celrep.2016.11.031
Tall AR, Fuster JJ. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. Nat Cardiovasc Res. 2022;1:116–24.
pubmed: 36337911 pmcid: 9631799 doi: 10.1038/s44161-021-00015-3
Gómez AM, Martínez C, González M, Luque A, Melen GJ, Martínez J, et al. Chemokines and relapses in childhood acute lymphoblastic leukemia: a role in migration and in resistance to antileukemic drugs. Blood Cells, Mol, Dis. 2015;55:220–7.
pubmed: 26227851 doi: 10.1016/j.bcmd.2015.07.001
Lee Y, Chittezhath M, André V, Zhao H, Poidinger M, Biondi A, et al. Protumoral role of monocytes in human B-cell precursor acute lymphoblastic leukemia: involvement of the chemokine CXCL10. Blood, J Am Soc Hematol. 2012;119:227–37.
Sarris AH, Broxmeyer HE, Wirthmueller U, Karasavvas N, Cooper S, Lu L, et al. Human interferon-inducible protein 10: expression and purification of recombinant protein demonstrate inhibition of early human hematopoietic progenitors. J Exp Med. 1993;178:1127–32.
pubmed: 8350051 doi: 10.1084/jem.178.3.1127
Aldinucci D, Poletto D, Nanni P, Degan M, Rupolo M, Pinto A, et al. CD40L induces proliferation, self-renewal, rescue from apoptosis, and production of cytokines by CD40-expressing AML blasts. Exp Hematol. 2002;30:1283–92.
pubmed: 12423681 doi: 10.1016/S0301-472X(02)00921-9
Argiropoulos B, Palmqvist L, Yung E, Kuchenbauer F, Heuser M, Sly LM, et al. Linkage of Meis1 leukemogenic activity to multiple downstream effectors including Trib2 and Ccl3. Exp Hematol. 2008;36:845–59.
pubmed: 18375036 doi: 10.1016/j.exphem.2008.02.011
Kornblau SM, Mccue D, Singh N, Chen W, Estrov Z, Coombes KR. Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood .2010;116:4251–61.
pubmed: 20679526 pmcid: 4081283 doi: 10.1182/blood-2010-01-262071
Vijay V, Miller R, Vue GS, Pezeshkian MB, Maywood M, Ast AM, et al. Interleukin-8 blockade prevents activated endothelial cell mediated proliferation and chemoresistance of acute myeloid leukemia. Leuk Res. 2019;84:106180.
pubmed: 31299413 pmcid: 6857733 doi: 10.1016/j.leukres.2019.106180
Vadakekolathu J, Minden MD, Hood T, Church SE, Reeder S, Altmann H, et al. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci Transl Med. 2020;12:eaaz0463.
pubmed: 32493790 pmcid: 7427158 doi: 10.1126/scitranslmed.aaz0463
Stevens AM, Miller JM, Munoz JO, Gaikwad AS, Redell MS. Interleukin-6 levels predict event-free survival in pediatric AML and suggest a mechanism of chemotherapy resistance. Blood Adv 2017;1:1387–97.
pubmed: 29296780 pmcid: 5727855 doi: 10.1182/bloodadvances.2017007856
Lasry A, Nadorp B, Fornerod M, Nicolet D, Wu H, Walker CJ, et al. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. Nature Cancer. 2022;4:27–42.
Bertoli S, Picard M, Bérard E, Griessinger E, Larrue C, Mouchel PL, et al. Dexamethasone in hyperleukocytic acute myeloid leukemia. Haematologica. 2018;103:988–98.
pubmed: 29519869 pmcid: 6058767 doi: 10.3324/haematol.2017.184267

Auteurs

Ding-Wen Chen (DW)

Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Jian-Meng Fan (JM)

Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Julie M Schrey (JM)

Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Dana V Mitchell (DV)

Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Seul K Jung (SK)

Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Stephanie N Hurwitz (SN)

Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Empar B Perez (EB)

Single Cell Discoveries, Utrecht, Netherlands.

Mauro J Muraro (MJ)

Single Cell Discoveries, Utrecht, Netherlands.

Martin Carroll (M)

Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Deanne M Taylor (DM)

Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Peter Kurre (P)

Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. kurrep@chop.edu.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. kurrep@chop.edu.

Classifications MeSH