Heterologous biosynthesis of myxobacterial lanthipeptides melittapeptins.
Biosynthesis
Heterologous expression
Lanthipeptide
Myxobacterium
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Dec 2024
Dec 2024
Historique:
received:
30
03
2023
accepted:
30
10
2023
revised:
28
09
2023
medline:
17
1
2024
pubmed:
17
1
2024
entrez:
17
1
2024
Statut:
ppublish
Résumé
The myxobacteria are an attractive bioresource for bioactive compounds since the large size genome contains many biosynthetic gene clusters of secondary metabolites. The genome of the myxobacterium Melittangium boletus contains three biosynthetic gene clusters for lanthipeptide production. One of the gene clusters includes genes coding lanthipeptide precursor (melA), class II lanthipeptide synthetase (melM), and transporter (melT). The amino acid sequence of melA indicated similarity with that of known lanthipeptides mersacidin and lichenicidin A1 by the alignment. To perform heterologous production of new lanthipeptides, the expression vector containing the essential genes (melA and melM) was constructed by utilizing codon-optimized synthetic genes. The co-expression of two genes in the host bacterial cells of Escherichia coli BL21 (DE3) afforded new lanthipeptides named melittapeptins A-C. The structures of melittapeptins A-C including lanthionine/methyllanthionine bridge pattern were proposed based on protease digestion and MS/MS experiments. The native strain of M. boletus did not produce melittapeptins A-C, so heterologous production using the biosynthetic gene cluster was effective in obtaining the lanthipeptides. Melittapeptins A-C showed specific and potent antibacterial activity to the Gram-positive bacterium Micrococcus luteus. To the best of our knowledge, this is the first report of antibacterial lanthipeptides derived from myxobacterial origin. KEY POINTS: • New lanthipeptides melittapeptins were heterologously produced in Escherichia coli. • Melittapeptins showed specific antibacterial activity against Micrococcus luteus. • Melittapeptins were the first antibacterial lanthipeptides of myxobacterial origin.
Identifiants
pubmed: 38229328
doi: 10.1007/s00253-023-12834-4
pii: 10.1007/s00253-023-12834-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
122Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Agrawal P, Amir S, Deepak BD, Mohanty D (2021) RiPPMiner-genome: a web resource for automated prediction of crosslinked chemical structures of RiPPs by genome mining. J Mol Biol 433(11):166887. https://doi.org/10.1016/j.jmb.2021.166887
doi: 10.1016/j.jmb.2021.166887
pubmed: 33972022
Agrawal P, Khater S, Gupta M, Sain N, Mohanty D (2017) RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links. Nucleic Acids Res 45(W1):W80–W88. https://doi.org/10.1093/nar/gkx408
doi: 10.1093/nar/gkx408
pubmed: 28499008
pmcid: 5570163
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach MA, Garavelli JS et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160. https://doi.org/10.1039/C2NP20085F
doi: 10.1039/C2NP20085F
pubmed: 23165928
pmcid: 3954855
Baindara P, Nayudu N, Korpole S (2020) Whole genome mining reveals a diverse repertoire of lanthionine synthetases and lanthipeptides among the genus Paenibacillus. J Appl Microbiol 128(2):473–490. https://doi.org/10.1111/jam.14495
doi: 10.1111/jam.14495
pubmed: 31633851
Bhat MA, Mishra AK, Bhat MA, Banday MI, Bashir O, Rather IA, Rahman S, Shah AA, Jan AT (2021) Myxobacteria as a source of new bioactive compounds: a perspective study. Pharmaceutics 13(8). https://doi.org/10.3390/pharmaceutics13081265
Campbell EA, Pavlova O, Zenkin N, Leon F, Irschik H, Jansen R, Severinov K, Darst SA (2005) Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J 24(4):674–682. https://doi.org/10.1038/sj.emboj.7600499
doi: 10.1038/sj.emboj.7600499
pubmed: 15692574
pmcid: 549610
Castro I, Costa H, Turgeman-Grott I, Allers T, Mendo S, Caetano T (2021) The lanthipeptide biosynthetic clusters of the domain Archaea. Microbiol Res 253:126884. https://doi.org/10.1016/j.micres.2021.126884
doi: 10.1016/j.micres.2021.126884
pubmed: 34628131
Chatterjee S, Chatterjee DK, Jani RH, Blumbach J, Ganguli BN, Klesel N, Limbert M, Seibert G (1992a) Mersacidin, a new antibiotic from Bacillus. In vitro and in vivo antibacterial activity. J Antibiot (Tokyo) 45(6):839–845. https://doi.org/10.7164/antibiotics.45.839
doi: 10.7164/antibiotics.45.839
pubmed: 1500348
Chatterjee S, Chatterjee S, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H (1992b) Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J Antibiot (Tokyo) 45(6):832–838. https://doi.org/10.7164/antibiotics.45.832
doi: 10.7164/antibiotics.45.832
pubmed: 1500347
Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24(4):403–427. https://doi.org/10.1111/j.1574-6976.2000.tb00548.x
doi: 10.1111/j.1574-6976.2000.tb00548.x
pubmed: 10978544
Dischinger J, Josten M, Szekat C, Sahl HG, Bierbaum G (2009) Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS One 4(8):e6788. https://doi.org/10.1371/journal.pone.0006788
doi: 10.1371/journal.pone.0006788
pubmed: 19707558
pmcid: 2727956
Edwards JL, Balthazar JT, Esposito DLA, Ayala JC, Schiefer A, Pfarr K, Hoerauf A, Alt S, Hesterkamp T, Grosse M, Stadler M, Golparian D, Unemo M, Read TD, Shafer WM (2022) Potent in vitro and ex vivo anti-gonococcal activity of the RpoB inhibitor corallopyronin A. mSphere 7(5):e0036222. https://doi.org/10.1128/msphere.00362-22
Garg N, Tang W, Goto Y, Nair SK, van der Donk WA (2012) Lantibiotics from Geobacillus thermodenitrificans. Proc Natl Acad Sci U S A 109(14):5241–5246. https://doi.org/10.1073/pnas.1116815109
doi: 10.1073/pnas.1116815109
pubmed: 22431611
pmcid: 3325677
Herrmann J, Fayad AA, Muller R (2017) Natural products from myxobacteria: novel metabolites and bioactivities. Nat Prod Rep 34(2):135–160. https://doi.org/10.1039/c6np00106h
doi: 10.1039/c6np00106h
pubmed: 27907217
Hoffmann A, Pag U, Wiedemann I, Sahl HG (2002) Combination of antibiotic mechanisms in lantibiotics. Farmaco 57(8):685–691. https://doi.org/10.1016/s0014-827x(02)01208-9
doi: 10.1016/s0014-827x(02)01208-9
pubmed: 12361237
Irschik H, Jansen R, Gerth K, Hofle G, Reichenbach H (1987) The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J Antibiot (Tokyo) 40(1):7–13. https://doi.org/10.7164/antibiotics.40.7
doi: 10.7164/antibiotics.40.7
pubmed: 3104268
Irschik H, Jansen R, Hofle G, Gerth K, Reichenbach H (1985) The corallopyronins, new inhibitors of bacterial RNA synthesis from myxobacteria. J Antibiot (Tokyo) 38(2):145–152. https://doi.org/10.7164/antibiotics.38.145
doi: 10.7164/antibiotics.38.145
pubmed: 2581926
Islam MR, Nagao J, Zendo T, Sonomoto K (2012) Antimicrobial mechanism of lantibiotics. Biochem Soc Trans 40(6):1528–1533. https://doi.org/10.1042/BST20120190
doi: 10.1042/BST20120190
pubmed: 23176511
Jeanne Dit Fouque K, Hegemann JD, Santos-Fernandez M, Le TT G-HM, van der Donk WA, Fernandez-Lima F (2021) Exploring structural signatures of the lanthipeptide prochlorosin 2.8 using tandem mass spectrometry and trapped ion mobility-mass spectrometry. Anal Bioanal Chem 413(19):4815–4824. https://doi.org/10.1007/s00216-021-03437-x
Kaweewan I, Hemmi H, Komaki H, Kodani S (2020) Isolation and structure determination of a new antibacterial peptide pentaminomycin C from Streptomyces cacaoi subsp. cacaoi. J Antibiot (Tokyo) 73(4):224–229. https://doi.org/10.1038/s41429-019-0272-y
doi: 10.1038/s41429-019-0272-y
pubmed: 31919422
Kaweewan I, Ijichi S, Nakagawa H, Kodani S (2022) Heterologous production of new lanthipeptides hazakensins A and B using a cryptic gene cluster of the thermophilic bacterium Thermosporothrix hazakensis. World J Microbiol Biotechnol 39(1):30. https://doi.org/10.1007/s11274-022-03463-6
doi: 10.1007/s11274-022-03463-6
pubmed: 36445498
Korp J, Vela Gurovic MS, Nett M (2016) Antibiotics from predatory bacteria. Beilstein J Org Chem 12:594–607. https://doi.org/10.3762/bjoc.12.58
doi: 10.3762/bjoc.12.58
pubmed: 27340451
pmcid: 4902038
Krome AK, Becker T, Kehraus S, Schiefer A, Gutschow M, Chaverra-Munoz L, Huttel S, Jansen R, Stadler M, Ehrens A, Pogorevc D, Muller R, Hubner MP, Hesterkamp T, Pfarr K, Hoerauf A, Wagner KG, Konig GM (2022) Corallopyronin A: antimicrobial discovery to preclinical development. Nat Prod Rep 39(9):1705–1720. https://doi.org/10.1039/d2np00012a
doi: 10.1039/d2np00012a
pubmed: 35730490
Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A (2004) Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54(3):648–653. https://doi.org/10.1093/jac/dkh387
doi: 10.1093/jac/dkh387
pubmed: 15282239
Lawton EM, Cotter PD, Hill C, Ross RP (2007) Identification of a novel two-peptide lantibiotic, haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 267(1):64–71. https://doi.org/10.1111/j.1574-6968.2006.00539.x
doi: 10.1111/j.1574-6968.2006.00539.x
pubmed: 17233677
Malabarba A, Pallanza R, Berti M, Cavalleri B (1990) Synthesis and biological activity of some amide derivatives of the lantibiotic actagardine. J Antibiot (Tokyo) 43(9):1089–1097. https://doi.org/10.7164/antibiotics.43.1089
doi: 10.7164/antibiotics.43.1089
pubmed: 2211372
Mukherjee S, van der Donk WA (2014) Mechanistic studies on the substrate-tolerant lanthipeptide synthetase ProcM. J Am Chem Soc 136(29):10450–10459. https://doi.org/10.1021/ja504692v
doi: 10.1021/ja504692v
pubmed: 24972336
pmcid: 4111213
Piper C, Casey PG, Hill C, Cotter PD, Ross RP (2012) The lantibiotic lacticin 3147 prevents systemic spread of Staphylococcus aureus in a murine infection model. Int J Microbiol 2012:806230. https://doi.org/10.1155/2012/806230
doi: 10.1155/2012/806230
pubmed: 22291709
pmcid: 3265090
Repka LM, Chekan JR, Nair SK, van der Donk WA (2017) Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem Rev 117(8):5457–5520. https://doi.org/10.1021/acs.chemrev.6b00591
doi: 10.1021/acs.chemrev.6b00591
pubmed: 28135077
pmcid: 5408752
Ryan MP, Rea MC, Hill C, Ross RP (1996) An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62(2):612–619. https://doi.org/10.1128/aem.62.2.612-619.1996
doi: 10.1128/aem.62.2.612-619.1996
pubmed: 8593062
pmcid: 167827
Saito K, Mukai K, Kaweewan I, Nakagawa H, Hosaka T, Kodani S (2023) Heterologous production and structure determination of a new lanthipeptide sinosporapeptin using a cryptic gene cluster in an actinobacterium Sinosporangium siamense. J Microbiol 61(6):641–648. https://doi.org/10.1007/s12275-023-00059-z
doi: 10.1007/s12275-023-00059-z
pubmed: 37306831
Shenkarev ZO, Finkina EI, Nurmukhamedova EK, Balandin SV, Mineev KS, Nadezhdin KD, Yakimenko ZA, Tagaev AA, Temirov YV, Arseniev AS, Ovchinnikova TV (2010) Isolation, structure elucidation, and synergistic antibacterial activity of a novel two-component lantibiotic lichenicidin from Bacillus licheniformis VK21. Biochemistry 49(30):6462–6472. https://doi.org/10.1021/bi100871b
doi: 10.1021/bi100871b
pubmed: 20578714
Singh M, Chaudhary S, Sareen D (2020) Roseocin, a novel two-component lantibiotic from an actinomycete. Mol Microbiol 113(2):326–337. https://doi.org/10.1111/mmi.14419
doi: 10.1111/mmi.14419
pubmed: 31696567
Thetsana C, Ijichi S, Kaweewan I, Nakagawa H, Kodani S (2022) Heterologous expression of a cryptic gene cluster from a marine proteobacterium Thalassomonas actiniarum affords new lanthipeptides thalassomonasins A and B. J Appl Microbiol 132(5):3629–3639. https://doi.org/10.1111/jam.15491
doi: 10.1111/jam.15491
pubmed: 35157343
Unno K, Kaweewan I, Nakagawa H, Kodani S (2020) Heterologous expression of a cryptic gene cluster from Grimontia marina affords a novel tricyclic peptide grimoviridin. Appl Microbiol Biotechnol 104(12):5293–5302. https://doi.org/10.1007/s00253-020-10605-z
doi: 10.1007/s00253-020-10605-z
pubmed: 32300852
van der Donk WA, Nair SK (2014) Structure and mechanism of lanthipeptide biosynthetic enzymes. Curr Opin Struct Biol 29:58–66. https://doi.org/10.1016/j.sbi.2014.09.006
doi: 10.1016/j.sbi.2014.09.006
pubmed: 25460269
Viel JH, Jaarsma AH, Kuipers OP (2021) Heterologous expression of mersacidin in Escherichia coli elucidates the mode of leader processing. ACS Synth Biol 10(3):600–608. https://doi.org/10.1021/acssynbio.0c00601
doi: 10.1021/acssynbio.0c00601
pubmed: 33689311
pmcid: 7985838
Viel JH, Kuipers OP (2022) Mutational studies of the mersacidin leader reveal the function of its unique two-step leader processing mechanism. ACS Synth Biol 11(5):1949–1957. https://doi.org/10.1021/acssynbio.2c00088
doi: 10.1021/acssynbio.2c00088
pubmed: 35504017
pmcid: 9127955
Walker MC, Eslami SM, Hetrick KJ, Ackenhusen SE, Mitchell DA, van der Donk WA (2020) Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genomics 21(1):387. https://doi.org/10.1186/s12864-020-06785-7
doi: 10.1186/s12864-020-06785-7
pubmed: 32493223
pmcid: 7268733
Wang X, Chen X, Wang ZJ, Zhuang M, Zhong L, Fu C, Garcia R, Muller R, Zhang Y, Yan J, Wu D, Huo L (2023) Discovery and characterization of a myxobacterial lanthipeptide with unique biosynthetic features and anti-inflammatory activity. J Am Chem Soc 145(30):16924–16937. https://doi.org/10.1021/jacs.3c06014
doi: 10.1021/jacs.3c06014
pubmed: 37466996
Whitworth DE, Sydney N, Radford EJ (2021) Myxobacterial genomics and post-genomics: a review of genome biology, genome sequences and related ‘omics studies. Microorganisms 9(10). https://doi.org/10.3390/microorganisms9102143
Yu Y, Mukherjee S, van der Donk WA (2015) Product formation by the promiscuous lanthipeptide synthetase ProcM is under kinetic control. J Am Chem Soc 137(15):5140–5148. https://doi.org/10.1021/jacs.5b01409
doi: 10.1021/jacs.5b01409
pubmed: 25803126
pmcid: 4487812