Evaluation of chicken chorioallantoic membrane model for tumor imaging and drug development: Promising findings.
68Ga
HER2
PET imaging
affibody
chicken embryo CAM
Journal
Animal models and experimental medicine
ISSN: 2576-2095
Titre abrégé: Animal Model Exp Med
Pays: United States
ID NLM: 101726292
Informations de publication
Date de publication:
17 Jan 2024
17 Jan 2024
Historique:
received:
14
07
2023
accepted:
18
12
2023
medline:
17
1
2024
pubmed:
17
1
2024
entrez:
17
1
2024
Statut:
aheadofprint
Résumé
The chicken chorioallantoic membrane (CAM) model is a potential alternative to the mouse model based on the 3R principles. However, its value for determination of the in vivo behaviors of radiolabeled peptides through positron emission tomography (PET) imaging needed investigation. Herein, the chicken CAM tumor models were established, and their feasibility was evaluated for evaluating the imaging properties of radiolabeled peptides using a Two human breast cancer cell lines were inoculated into chicken CAM and mice, respectively. The tumor-targeting potential and pharmacokinetic profile of a The tumor-formation time in chicken CAM model was shorter than that of mouse model. The uptake values of human epithelial growth factor receptor-2 (HER2)-positive Bcap37 tumors in chicken CAM and mouse models were 5.36 ± 0.26% ID/g and 5.26 ± 0.43% ID/g at 30 min postinjection of In this study, the CAM tumor model was successfully prepared. The chicken CAM model is a novel tool for quickly determining the in vivo properties of radiolabeled peptides targeting biomarkers. It may be beneficial for early monitoring of the therapeutic effect of a new drug through PET imaging with specific peptides.
Sections du résumé
BACKGROUND
BACKGROUND
The chicken chorioallantoic membrane (CAM) model is a potential alternative to the mouse model based on the 3R principles. However, its value for determination of the in vivo behaviors of radiolabeled peptides through positron emission tomography (PET) imaging needed investigation. Herein, the chicken CAM tumor models were established, and their feasibility was evaluated for evaluating the imaging properties of radiolabeled peptides using a
METHODS
METHODS
Two human breast cancer cell lines were inoculated into chicken CAM and mice, respectively. The tumor-targeting potential and pharmacokinetic profile of a
RESULTS
RESULTS
The tumor-formation time in chicken CAM model was shorter than that of mouse model. The uptake values of human epithelial growth factor receptor-2 (HER2)-positive Bcap37 tumors in chicken CAM and mouse models were 5.36 ± 0.26% ID/g and 5.26 ± 0.43% ID/g at 30 min postinjection of
CONCLUSION
CONCLUSIONS
In this study, the CAM tumor model was successfully prepared. The chicken CAM model is a novel tool for quickly determining the in vivo properties of radiolabeled peptides targeting biomarkers. It may be beneficial for early monitoring of the therapeutic effect of a new drug through PET imaging with specific peptides.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : University Synergy Innovation Program of Anhui Province
ID : GXXT-2019-035
Organisme : Basic Research Program of Jiangsu Province
ID : BK20192005
Organisme : National Natural Science Foundation of China
ID : 31972644
Organisme : National Natural Science Foundation of China
ID : 32272959
Organisme : Jiangsu Provincial Medical Key Laboratory (Key Laboratory of Nuclear Medicine)
Organisme : Jiangsu Provincial Medical Innovation Team
ID : CXTDA2017024
Informations de copyright
© 2024 The Authors. Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.
Références
Moradipoodeh B, Jamalan M, Zeinali M, Fereidoonnezhad M. Specific targeting of HER2-positive human breast carcinoma SK-BR-3 cells by amygdaline-ZHER2 affibody conjugate. Mol Biol Rep. 2020;47(9):7139-7151. doi:10.1007/s11033-020-05782-z
Harbeck N. Advances in targeting HER2-positive breast cancer. Curr Opin Obstet Gynecol. 2018;30(1):55-59. doi:10.1097/GCO.0000000000000431
Guo X, Zhu H, Zhou N, et al. Noninvasive detection of HER2 expression in gastric cancer by 64Cu-NOTA-Trastuzumab in PDX mouse model and in patients. Mol Pharm. 2018;15(11):5174-5182. doi:10.1021/acs.molpharmaceut.8b00673
Pernas S, Tolaney SM. HER2-positive breast cancer: new therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol. 2019;11:1758835919833519. doi:10.1177/1758835919833519
Arciero CA, Guo Y, Jiang R, et al. ER+/HER2+ breast cancer has different metastatic patterns and better survival than ER−/HER2+ breast cancer. Clin Breast Cancer. 2019;19(4):236-245. doi:10.1016/j.clbc.2019.02.001
Liu Y, Wang L, Pan D, et al. PET evaluation of light-induced modulation of microglial activation and GLP-1R expression in depressive rats. Transl Psychiatry. 2021;11(1):26. doi:10.1038/s41398-020-01155-z
Zlatopolskiy BD, Zischler J, Schäfer D, et al. Discovery of 7-[18F]Fluorotryptophan as a novel positron emission tomography (PET) probe for the visualization of tryptophan metabolism in vivo. J Med Chem. 2018;61(1):189-206. doi:10.1021/acs.jmedchem.7b01245
Alhuseinalkhudhur A, Lindman H, Liss P, et al. Human epidermal growth factor receptor 2-targeting [68Ga]Ga-ABY-025 PET/CT predicts early metabolic response in metastatic breast cancer. J Nucl Med. 2023;64(9):1364-1370. doi:10.2967/jnumed.122.265364
Han J, Chen Y, Zhao Y, et al. Pre-clinical study of the [18F]AlF-labeled HER2 affibody for non-invasive HER2 detection in gastric cancer. Front Med (Lausanne). 2022;9:803005. doi:10.3389/fmed.2022.803005
Miladinova D. Molecular imaging of HER2 receptor: targeting HER2 for imaging and therapy in nuclear medicine. Front Mol Biosci. 2023;10:1144817. doi:10.3389/fmolb.2023.1144817
Zhou N, Liu C, Guo X, et al. Impact of 68Ga-NOTA-MAL-MZHER2 PET imaging in advanced gastric cancer patients and therapeutic response monitoring. Eur J Nucl Med Mol Imaging. 2021;48(1):161-175. doi:10.1007/s00259-020-04898-5
Miao H, Sun Y, Jin Y, Hu X, Song S, Zhang J. Application of a novel 68Ga-HER2 affibody PET/CT imaging in breast cancer patients. Front Oncol. 2022;12:894767. doi:10.3389/fonc.2022.894767
Xu Y, Wang L, Pan D, et al. PET imaging of a 68Ga labeled modified HER2 affibody in breast cancers: from xenografts to patients. Br J Radiol. 2019;92(1104):20190425. doi:10.1259/bjr.20190425
Chu P-Y, Koh AP-F, Antony J, Huang RY-J. Applications of the Chick Chorioallantoic membrane as an alternative model for cancer studies. Cells Tissues Organs. 2022;211(2):222-237. doi:10.1159/000513039
Pinto MT, Ribeiro AS, Conde I, Carvalho R, Paredes J. The chick chorioallantoic membrane model: a new in vivo tool to evaluate breast cancer stem cell activity. Int J Mol Sci. 2020;22(1):334. doi:10.3390/ijms22010334
Pomraenke M, Bolney R, Winkens T, et al. A novel breast cancer xenograft model using the ostrich Chorioallantoic membrane-a proof of concept. Vet Sci. 2023;10(5):349. doi:10.3390/vetsci10050349
Hilbrig C, Löffler J, Fischer G, et al. Evaluation of the EPR effect in the CAM-model by molecular imaging with MRI and PET using 89Zr-labeled HAS. Cancers (Basel). 2023;15(4):1126. doi:10.3390/cancers15041126
Xu Y, Bai Z, Huang Q, et al. PET of HER2 expression with a novel 18FAl labeled affibody. J Cancer. 2017;8(7):1170-1178. doi:10.7150/jca.18070
Xu Y, Wang L, Pan D, et al. Synthesis of a novel 89Zr-labeled HER2 affibody and its application study in tumor PET imaging. EJNMMI Res. 2020;10(1):58. doi:10.1186/s13550-020-00649-7
Veinotte CJ, Dellaire G, Berman JN. Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis Model Mech. 2014;7(7):745-754. doi:10.1242/dmm.015784
Jung J, Seol HS, Chang S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat. 2018;50(1):1-10. doi:10.4143/crt.2017.307
Ribatti D. The chick embryo chorioallantoic membrane as a model for tumor biology. Exp Cell Res. 2014;328(2):314-324. doi:10.1016/j.yexcr.2014.06.010
Haller S, Ametamey SM, Schibli R, Müller C. Investigation of the chick embryo as a potential alternative to the mouse for evaluation of radiopharmaceuticals. Nucl Med Biol. 2015;42(3):226-233. doi:10.1016/j.nucmedbio.2014.10.010
Chen L, Wang S, Feng Y, et al. Utilisation of Chick embryo Chorioallantoic membrane as a model platform for imaging-navigated biomedical research. Cell. 2021;10(2):463. doi:10.3390/cells10020463
Sajjad H, Imtiaz S, Noor T, Siddiqui YH, Sajjad A, Zia M. Cancer models in preclinical research: a chronicle review of advancement in effective cancer research. Animal Model Exp Med. 2021;4(2):87-103. doi:10.1002/ame2.12165
Monzavi SM, Muhammadnejad A, Behfar M, Khorsand AA, Muhammadnejad S, Kajbafzadeh AM. Spontaneous xenogeneic GvHD in Wilms' tumor patient-derived xenograft models and potential solutions. Animal Model Exp Med. 2022;5(4):389-396. doi:10.1002/ame2.1225427
Warnock G, Turtoi A, Blomme A, et al. In vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: a new tool for oncology and radiotracer development. J Nucl Med. 2013;54(10):1782-1788. doi:10.2967/jnumed.112.117150
Löffler J, Hamp C, Scheidhauer E, et al. Comparison of quantification of target-specific accumulation of [18F]F-siPSMA-14 in the HET-CAM model and in mice using PET/MRI. Cancers (Basel). 2021;13(16):4007. doi:10.3390/cancers13164007
Patten LW, Blatchford P, Strand M, Kaizer AM. Assessing the performance of different outcomes for tumor growth studies with animal models. Animal Model Exp Med. 2022;5(3):248-257. doi:10.1002/ame2.12250