Oral and rectal colonization of methicillin-resistant Staphylococcus aureus in long-term care facility residents and their association with clinical status.
MRSA
Staphylococcus aureus
antibiotic resistance
long-term care facility
oral cavity
Journal
Microbiology and immunology
ISSN: 1348-0421
Titre abrégé: Microbiol Immunol
Pays: Australia
ID NLM: 7703966
Informations de publication
Date de publication:
17 Jan 2024
17 Jan 2024
Historique:
revised:
03
12
2023
received:
01
10
2023
accepted:
05
12
2023
medline:
17
1
2024
pubmed:
17
1
2024
entrez:
17
1
2024
Statut:
aheadofprint
Résumé
Staphylococcus aureus is a commensal bacterium in humans, but it sometimes causes opportunistic infectious diseases such as suppurative skin disease, pneumonia, and enteritis. Therefore, it is important to determine the prevalence of S. aureus and methicillin-resistant S. aureus (MRSA) in individuals, especially older adults. In this study, we investigated the prevalence of S. aureus and MRSA in the oral cavity and feces of residents in long-term care facilities (LTCFs). S. aureus was isolated from the oral cavity of 61/178 (34.3%) participants, including 28 MRSA-positive participants (15.7%), and from the feces of 35/127 (27.6%) participants, including 16 MRSA-positive participants (12.6%). S. aureus and MRSA were isolated from both sites in 19/127 individuals (15.0%) and 10/127 individuals (7.9%), respectively. Among 19 participants with S. aureus isolation from both sites, 17 participants showed the same sequence type (ST) type. Then, we analyzed the correlation of S. aureus and MRSA in the oral cavity and rectum with the participant's condition. S. aureus and MRSA positivity in the oral cavity was significantly related to tube feeding, while there was no correlation of rectal S. aureus/MRSA with any factors. Our findings regarding the oral inhabitation of MRSA and its risk factors indicate the importance of considering countermeasures against MRSA infection in LTCFs.
Identifiants
pubmed: 38230847
doi: 10.1111/1348-0421.13111
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministry of Health, Labour, and Welfare Japan
ID : JPMH19HA1004
Informations de copyright
© 2023 The Societies and John Wiley & Sons Australia, Ltd.
Références
Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318-327. https://doi.org/10.1016/S1473-3099(17)30753-3
CDC. Antibiotic resistance threats in the United States, 2019. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC; 2019.
Jean S-S, Harnod D, Hsueh P-R. Global threat of carbapenem-resistant Gram-negative bacteria. Front Cell Infect Microbiol. 2022;12:823684. https://doi.org/10.3389/fcimb.2022.823684
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4:482-501. https://doi.org/10.3934/microbiol.2018.3.482
Ahmad N, Joji RM, Shahid M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: a review. Front Cell Infect Microbiol. 2023;12:1065796. https://doi.org/10.3389/fcimb.2022.1065796
Velazquez-Meza ME, Galarde-López M, Carrillo-Quiróz B, Alpuche-Aranda CM. Antimicrobial resistance: One Health approach. Vet World. 2022;15:743-749. https://doi.org/10.14202/vetworld.2022.743-749
Kajihara T, Yahara K, Yoshikawa M, et al. Oral and rectal colonization by antimicrobial-resistant Gram-negative bacteria and their association with death among residents of long-term care facilities: a prospective, multicenter, observational, cohort study. Gerontology. 2023;69:261-272. https://doi.org/10.1159/000525759
Chen WA, Dou Y, Fletcher HM, Boskovic DS. Local and systemic effects of Porphyromonas gingivalis infection. Microorganisms. 2023;11:470. https://doi.org/10.3390/microorganisms11020470
Bhuyan R, Bhuyan SK, Mohanty JN, et al. Periodontitis and its inflammatory changes linked to various systemic diseases: a review of its underlying mechanisms. Biomedicines. 2022;10:2659. https://doi.org/10.3390/biomedicines10102659
Peng X, Cheng L, You Y, et al. Oral microbiota in human systematic diseases. Int J Oral Sci. 2022;14:14. https://doi.org/10.1038/s41368-022-00163-7
Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:520-532. https://doi.org/10.1056/NEJM199808203390806
Wertheim HF, Melles DC, Vos MC, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5:751-762. https://doi.org/10.1016/S1473-3099(05)70295-4
Lindsay JA, Holden MTG. Staphylococcus aureus: superbug, super genome? Trends Microbiol. 2004;12:378-385. https://doi.org/10.1016/j.tim.2004.06.004
Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7:629-641. https://doi.org/10.1038/nrmicro2200
Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17:203-218. https://doi.org/10.1038/s41579-018-0147-4
Koukos G, Sakellari D, Arsenakis M, Tsalikis L, Slini T, Konstantinidis A. Prevalence of Staphylococcus aureus and methicillin resistant Staphylococcus aureus (MRSA) in the oral cavity. Arch Oral Biol. 2015;60:1410-1415. https://doi.org/10.1016/j.archoralbio.2015.06.009
Campos J, Pires MF, Sousa M, et al. Unveiling the relevance of the oral cavity as a Staphylococcus aureus colonization site and potential source of antimicrobial resistance. Pathogens. 2023;12:765. https://doi.org/10.3390/pathogens12060765
Rathbun KP, Bourgault AM, Sole ML. Oral microbes in hospital-acquired pneumonia: practice and research implications. Crit Care Nurse. 2022;42:47-54. https://doi.org/10.4037/ccn2022672
Japanese Respiratory Society. Aspiration pneumonia. Respirology. 2009;14(Suppl 2):S59-S64. https://doi.org/10.1111/j.1440-1843.2009.01578.x
Khadka S, Khan S, King A, Goldberg LR, Crocombe L, Bettiol S. Poor oral hygiene, oral microorganisms and aspiration pneumonia risk in older people in residential aged care: a systematic review. Age Ageing. 2021;50:81-87. https://doi.org/10.1093/ageing/afaa102
Yoneyama T, Yoshida M, Ohrui T, et al. Oral care reduces pneumonia in older patients in nursing homes. J Am Geriatr Soc. 2002;50:430-433. https://doi.org/10.1046/j.1532-5415.2002.50106.x
Sjögren P, Nilsson E, Forsell M, Johansson O, Hoogstraate J. A systematic review of the preventive effect of oral hygiene on pneumonia and respiratory tract infection in elderly people in hospitals and nursing homes: effect estimates and methodological quality of randomized controlled trials. J Am Geriatr Soc. 2008;56:2124-2130. https://doi.org/10.1111/j.1532-5415.2008.01926.x
van der Maarel-Wierink CD, Vanobbergen JNO, Bronkhorst EM, Schols JMGA, de Baat C. Oral health care and aspiration pneumonia in frail older people: a systematic literature review. Gerodontology. 2013;30:3-9. https://doi.org/10.1111/j.1741-2358.2012.00637.x
Osso D, Kanani N. Antiseptic mouth rinses: an update on comparative effectiveness, risks and recommendations. J Dent Hyg. 2013;87:10-18.
Septimus EJ, Schweizer ML. Decolonization in prevention of health care-associated infections. Clin Microbiol Rev. 2016;29:201-222. https://doi.org/10.1128/CMR.00049-15
Chalmers J, King P, Spencer A, Wright F, Carter K. The oral health assessment tool--validity and reliability. Aust Dent J. 2005;50:191-199. https://doi.org/10.1111/j.1834-7819.2005.tb00360.x
Haruta A, Kawada-Matsuo M, Le MN-T, et al. Disinfectant susceptibility of third-generation-cephalosporin/carbapenem-resistant Gram-negative bacteria isolated from the oral cavity of residents of long-term-care facilities. Appl Environ Microbiol. 2023;89:e0171222. https://doi.org/10.1128/aem.01712-22
Yu L, Kitagawa H, Kayama S, et al. Complete genome sequence of Aeromonas caviae strain MS6064, a mcr-3-carrying clinical isolate from Japan. Microbiol Resour Announc. 2021;10:e01037-20. https://doi.org/10.1128/MRA.01037-20
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293-W296. https://doi.org/10.1093/nar/gkab301
Long SW, Beres SB, Olsen RJ, Musser JM. Absence of patient-to-patient intrahospital transmission of Staphylococcus aureus as determined by whole-genome sequencing. mBio. 2014;5:e01692-14. https://doi.org/10.1128/mBio.01692-14
Price JR, Golubchik T, Cole K, et al. Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit. Clin Infect Dis. 2014;58:609-618. https://doi.org/10.1093/cid/cit807
Golubchik T, Batty EM, Miller RR, et al. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLoS One. 2013;8:e61319. https://doi.org/10.1371/journal.pone.0061319
Le MN-T, Kayama S, Yoshikawa M, et al. Oral colonisation by antimicrobial-resistant Gram-negative bacteria among long-term care facility residents: prevalence, risk factors, and molecular epidemiology. Antimicrob Resist Infect Control. 2020;9:45. https://doi.org/10.1186/s13756-020-0705-1
Silva LP, Fortaleza CMCB, Teixeira NB, et al. Molecular epidemiology of Staphylococcus aureus and MRSA in bedridden patients and residents of long-term care facilities. Antibiotics. 2022;11:1526. https://doi.org/10.3390/antibiotics11111526
Vanzato Palazzo IC, Gir E, Pimenta FC, et al. Does the oral cavity represent an important reservoir for MRSA in healthcare workers? J Hosp Infect. 2010;76:277-278. https://doi.org/10.1016/j.jhin.2010.04.018
Petti S, Kakisina N, Volgenant CMC, et al. Low methicillin-resistant Staphylococcus aureus carriage rate among Italian dental students. Am J Infect Control. 2015;43:e89-e91. https://doi.org/10.1016/j.ajic.2015.08.008
Kimura Y, Morinaga Y, Akamatsu N, et al. Antimicrobial susceptibility and molecular characteristics of methicillin-resistant Staphylococcus aureus in a Japanese secondary care facility. J Infect Chemother. 2016;22:14-18. https://doi.org/10.1016/j.jiac.2015.08.011
Harada D, Nakaminami H, Miyajima E, et al. Change in genotype of methicillin-resistant Staphylococcus aureus (MRSA) affects the antibiogram of hospital-acquired MRSA. J Infect Chemother. 2018;24:563-569. https://doi.org/10.1016/j.jiac.2018.03.004
Osaka S, Okuzumi K, Koide S, et al. Genetic shifts in methicillin-resistant Staphylococcus aureus epidemic clones and toxin gene profiles in Japan: comparative analysis among pre-epidemic, epidemic and post-epidemic phases. J Med Microbiol. 2018;67:392-399. https://doi.org/10.1099/jmm.0.000687
Kaku N, Sasaki D, Ota K, Miyazaki T, Yanagihara K. Changing molecular epidemiology and characteristics of MRSA isolated from bloodstream infections: nationwide surveillance in Japan in 2019. J Antimicrob Chemother. 2022;77:2130-2141. https://doi.org/10.1093/jac/dkac154
Maki KA, Kazmi N, Barb JJ, Ames N. The oral and gut bacterial microbiomes: similarities, differences, and connections. Biol Res Nurs. 2021;23:7-20. https://doi.org/10.1177/1099800420941606
Ames NJ, Ranucci A, Moriyama B, Wallen GR. The human microbiome and understanding the 16S rRNA gene in translational nursing science. Nurs Res. 2017;66:184-197. https://doi.org/10.1097/NNR.0000000000000212
Hou Z, Liu L, Wei J, Xu B. Progress in the prevalence, classification and drug resistance mechanisms of methicillin-resistant Staphylococcus aureus. Infect Drug Resist. 2023;16:3271-3292. https://doi.org/10.2147/IDR.S412308
Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;10:107. https://doi.org/10.3389/fcimb.2020.00107
Mayer S, Boos M, Beyer A, Fluit AC, Schmitz FJ. Distribution of the antiseptic resistance genes qacA, qacB and qacC in 497 methicillin-resistant and -susceptible European isolates of Staphylococcus aureus. J Antimicrob Chemother. 2001;47:896-897. https://doi.org/10.1093/jac/47.6.896
Wassenaar T, Ussery D, Nielsen L, Ingmer H. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol. 2015;5:44-61. https://doi.org/10.1556/EUJMI-D-14-00038
El Sayed Zaki M, Bastawy S, Montasser K. Molecular study of resistance of Staphylococcus aureus to antiseptic quaternary ammonium compounds. J Glob Antimicrob Resist. 2019;17:94-97. https://doi.org/10.1016/j.jgar.2018.11.022