A Ratio Fluorescence Method Based on Dual Emissive Copper Nanoclusters for the Detection of Vanillin.

Ascorbic acid Copper Nanoclusters Phenylalanine Vanillin

Journal

Journal of fluorescence
ISSN: 1573-4994
Titre abrégé: J Fluoresc
Pays: Netherlands
ID NLM: 9201341

Informations de publication

Date de publication:
17 Jan 2024
Historique:
received: 29 11 2023
accepted: 04 01 2024
medline: 17 1 2024
pubmed: 17 1 2024
entrez: 17 1 2024
Statut: aheadofprint

Résumé

In this study, a novel double-emission fluorescence probe at 340 and 400 nm was synthesized by one-pot method using phenylalanine (Phe) and ascorbic acid (AA) as stabilizing and reducing agents. It was found that the fluorescence intensity of the probe at 400 nm could be controlled by controlling the temperature within a certain range, and the ratio of double-emission fluorescence probe could be further regulated. Under the optimal conditions, the fluorescence intensity at 340 nm decreased significantly, while it only showed a slight decrease at 400 nm, which constituted the ratio fluorescence probe. The synthesized fluorescence probe showed good linearity in the range of 0.2-32 μM, and its detection limit was 63.4 nM. Moreover, the method was successfully employed to determine VA in vanilla drink and perfumes, and corresponding results were consistent with those of HPLC.

Identifiants

pubmed: 38231366
doi: 10.1007/s10895-024-03582-3
pii: 10.1007/s10895-024-03582-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Peng H, Wang S, Zhang Z, Xiong H, Li Y, Chen L, Li Y (2012) Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label-free detection of vanillin. J Agric Food Chem 60:1921–1928. https://doi.org/10.1021/jf204736p
doi: 10.1021/jf204736p pubmed: 22292481
Wang G, Zheng P, Wu D, Chen P (2023) High-yield natural vanillin production by Amycolatopsis sp. after CRISPR-Cas12a-Mediated gene deletion. ACS Omega 8:14113–14121. https://doi.org/10.1021/acsomega.3c00790
doi: 10.1021/acsomega.3c00790 pubmed: 37091397 pmcid: 10116632
Wang Y, Yue Q, Hu Y, Liu C, Tao L, Zhang C (2019) Synthesis of N-doped carbon dots and application in vanillin detection based on collisional quenching. RSC Adv 9:40222–40227. https://doi.org/10.1039/c9ra08352a
doi: 10.1039/c9ra08352a pubmed: 35542682 pmcid: 9076176
Moradi O (2022) A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples. Food Chem Toxicol 168:113391. https://doi.org/10.1016/j.fct.2022.113391
doi: 10.1016/j.fct.2022.113391 pubmed: 36041662
Ji Y, Zhao J, Zhao L (2022) Fabrication and characterization of magnetic molecularly imprinted polymer based on deep eutectic solvent for specific recognition and quantification of vanillin in infant complementary food. Food Chem 374:131720. https://doi.org/10.1016/j.foodchem.2021.131720
doi: 10.1016/j.foodchem.2021.131720 pubmed: 34896948
Nixon E, Sakthivel R, Alothman Z, Ganesh P, Chung R (2023) Lanthanum nickelate spheres embedded acid functionalized carbon nanofiber composite: an efficient electrocatalyst for electrochemical detection of food additive vanillin. Food Chem 409:135324. https://doi.org/10.1016/j.foodchem.2022.135324
doi: 10.1016/j.foodchem.2022.135324 pubmed: 36586249
Ni Y, Zhang G, Kokot S (2005) Simultaneous spectrophotometric determination of maltol, ethyl maltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks. Food Chem 89:465–473. https://doi.org/10.1016/j.foodchem.2004.05.037
doi: 10.1016/j.foodchem.2004.05.037
Bononi M, Quaglia G, Tateo F (2015) Easy extraction method to evaluate δ13C vanillin by liquid chromatography–isotopic ratio mass spectrometry in chocolate bars and chocolate snack foods. J Agric Food Chem 63:4777–4781. https://doi.org/10.1021/acs.jafc.5b02136
doi: 10.1021/acs.jafc.5b02136 pubmed: 25965784
Chen L, Chaisiwamongkhol K, Chen Y, Compton R (2019) Rapid electrochemical detection of vanillin in natural vanilla. Electroanal 31:1067–1074. https://doi.org/10.1002/elan.201900037
doi: 10.1002/elan.201900037
Minematsu S, Xuan G, Wu S (2013) Determination of vanillin in vanilla perfumes and air by capillary electrophoresis. J Environ Sci 25:S8–S14. https://doi.org/10.1016/S1001-0742(14)60617-3
doi: 10.1016/S1001-0742(14)60617-3
Zhang Y, Feng Y, Ren X, He X, Li W, Zhang Y (2022) Bimetallic molecularly imprinted nanozyme: dual-mode detection platform. Biosens Bioelectron 196:113718. https://doi.org/10.1016/j.bios.2021.113718
doi: 10.1016/j.bios.2021.113718 pubmed: 34673481
Peng J, Wei M, Hu Y, Yang Y, Guo Y, Zhang F (2019) Simultaneous determination of maltol, ethyl maltol, vanillin, and ethyl vanillin in foods by isotope dilution headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Food Anal Method 12:1725–1735. https://doi.org/10.1007/s12161-019-01518-3
doi: 10.1007/s12161-019-01518-3
Zheng X, Chen Q, Zhang Z, Wang Z, Gong Z (2022) An aggregation-induced emission copper nanoclusters fluorescence probe for the sensitive detection of tetracycline. Microchem J 180:107570. https://doi.org/10.1016/j.microc.2022.107570
doi: 10.1016/j.microc.2022.107570
Wang C, Wang Y, Xu L, Shi X, Li X, Xu X, Sun H, Yang B, Lin Q (2013) A galvanic replacement route to prepare strongly fluorescent and highly stable gold nanodots for cellular imaging. Small 9:413–420. https://doi.org/10.1002/smll.201201849
doi: 10.1002/smll.201201849 pubmed: 23042724
Wu Z, Yao Q, Zang S, Xie J (2021) Aggregation-induced emission in luminescent metal nanoclusters. Natl Sci Rev 8:208. https://doi.org/10.1093/nsr/nwaa208
doi: 10.1093/nsr/nwaa208
Al-mashriqi H, Cai M, Qi S, Zhai H (2023) BSA capped gold nanoclusters modulated by copper ion for sensitive and selective detection of histidine in biological fluid. J Fluoresc 33:697–706. https://doi.org/10.1007/s10895-022-03112-z
doi: 10.1007/s10895-022-03112-z pubmed: 36484888
Guo S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264. https://doi.org/10.1016/j.nantod.2011.04.007
doi: 10.1016/j.nantod.2011.04.007
Jin L, Zhang Z, Tang A, Li C, Shen Y (2016) Synthesis of yeast extract-stabilized Cu nanoclusters for sensitive fluorescent detection of sulfide ions in water. Biosens Bioelectron 79:108–113. https://doi.org/10.1016/j.bios.2015.12.001
doi: 10.1016/j.bios.2015.12.001 pubmed: 26703988
Wang C, Ling L, Yao Y, Song Q (2015) One-step synthesis of fluorescent smart thermo-responsive copper clusters: a potential nanothermometer in living cells. Nano Res 8:1975–1986. https://doi.org/10.1007/s12274-015-0707-0
doi: 10.1007/s12274-015-0707-0
Guo Y, Zhang L, Zhang S, Yang Y, Chen X, Zhang M (2015) Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens Bioelectron 63:61–71. https://doi.org/10.1016/j.bios.2014.07.018
doi: 10.1016/j.bios.2014.07.018 pubmed: 25058940
Qiao Y, Xu T, Zhang Y, Zhang C, Shi L, Zhang G, Shuang S, Dong C (2015) Green synthesis of fluorescent copper nanoclusters for reversible pH-sensors. Sens Actuat B-Chem 220:1064–1069. https://doi.org/10.1016/j.snb.2015.06.073
doi: 10.1016/j.snb.2015.06.073
Hu X, Cao H, Dong W, Tang J (2021) Ratiometric fluorescent sensing of ethanol based on copper nanoclusters with tunable dual emission. Talanta 233:122480. https://doi.org/10.1016/j.talanta.2021.122480
doi: 10.1016/j.talanta.2021.122480 pubmed: 34215108
Zheng Y, Wan Y, Wei Y, Yu Y (2023) One-Pot synthesis of dual-emissive carbon dots for ratiometric fluorescent determination of Hg
doi: 10.1007/s10895-023-03154-x pubmed: 36917347
Wang C, Yang M, Mi G, Zhang B, Dou X, Liu E, Hu X, Xue W, Fan J (2021) Dual-emission fluorescence sensor based on biocompatible bovine serum albumin stabilized copper nanoclusters for ratio and visualization detection of hydrogen peroxide. Dyes Pigm 190:109312. https://doi.org/10.1016/j.dyepig.2021.109312
doi: 10.1016/j.dyepig.2021.109312
Deng H, Peng H, Huang K, He S, Yuan Q, Lin Z, Chen R, Xia X, Chen W (2019) Self-referenced ratiometric detection of sulfatase activity with dual-emissive urease-encapsulated gold nanoclusters. ACS Sens 4:344–352. https://doi.org/10.1021/acssensors.8b01130
doi: 10.1021/acssensors.8b01130 pubmed: 30652857
Zhu S, Bai X, Wang T, Shi Q, Zhu J, Wang B (2021) One-step synthesis of fluorescent graphene quantum dots as an effective fluorescence probe for vanillin detection. RSC Adv 11:9121–9129. https://doi.org/10.1039/d0ra10825a
doi: 10.1039/d0ra10825a pubmed: 35423426 pmcid: 8695316
Zhai H, Gao M, Bai Y, Qin J, Song Q, Liu Z, Wang H, Feng F (2022) Development of fluorescence sensors with copper-based nanoclusters via Forster resonance energy transfer and the quenching effect for vanillin detection. Anal Methods 14:4245–4251. https://doi.org/10.1039/d2ay01170k
doi: 10.1039/d2ay01170k pubmed: 36250613
Li L, Fu M, Yang D, Tu Y, Yan J (2022) Sensitive detection of glutathione through inhibiting quenching of copper nanoclusters fluorescence. Spectrochim Acta A 267:120563. https://doi.org/10.1016/j.saa.2021.120563
doi: 10.1016/j.saa.2021.120563
Wang B, Gui R, Jin H, He W, Wang Z (2018) Red-emitting BSA-stabilized copper nanoclusters acted as a sensitive probe for fluorescence sensing and visual imaging detection of rutin. Talanta 178:1006–1010. https://doi.org/10.1016/j.talanta.2017.08.102
doi: 10.1016/j.talanta.2017.08.102 pubmed: 29136788
Fan Y, Yu W, Liao Y, Jiang X, Wang Z, Cheng Z (2022) Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters. Spectrochim Acta A 267:120509. https://doi.org/10.1016/j.saa.2021.120509
doi: 10.1016/j.saa.2021.120509
Bao Z, Zhang K, Jian J, Hu Z, Yuan K, Shao H, Peng K, Jiang Z, Zapien J, Yan Y, Zhang C, Zhou H (2018) Strongly fluorescent cysteamine-coated copper nanoclusters as a fluorescent probe for determination of picric acid. Microchim Acta 185:507. https://doi.org/10.1007/s00604-018-3049-2
doi: 10.1007/s00604-018-3049-2
Wang Y, Chen T, Zhuang Q, Ni Y (2018) Label-free photoluminescence assay for nitrofurantoin detection in lake water samples using adenosine-stabilized copper nanoclusters as nanoprobes. Talanta 179:409–413. https://doi.org/10.1016/j.talanta.2017.11.014
doi: 10.1016/j.talanta.2017.11.014 pubmed: 29310252
Wei W, Lu Y, Chen W, Chen S (2011) One-Pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J Am Chem Soc 133:2060–2063. https://doi.org/10.1021/ja109303z
doi: 10.1021/ja109303z pubmed: 21280578
Rao H, Ge H, Lu Z, Liu W, Chen Z, Zhang Z, Wang X, Zou P, Wang Y, He H, Zeng X (2016) Copper nanoclusters as an on-off-on fluorescent probe for ascorbic acid. Microchim Acta 183:1651–1657. https://doi.org/10.1007/s00604-016-1794-7
doi: 10.1007/s00604-016-1794-7
Wang Y, Tan Y, Ding Y, Fu L, Qing W (2022) Phenylalanine stabilized copper nanoclusters for specific destruction of Congo red and bacteria in aqueous solution. Colloid Surf A 654:130072. https://doi.org/10.1016/j.colsurfa.2022.130072
doi: 10.1016/j.colsurfa.2022.130072
Shekhar S, Mahato P, Yadav R, Verma S, Mukherjee S (2022) White light generation through l-ascorbic acid-templated thermoresponsive copper nanoclusters. ACS Sustainable Chem Eng 10:1379–1389. https://doi.org/10.1021/acssuschemeng.1c06099
doi: 10.1021/acssuschemeng.1c06099
Li Q, Li Y, Li H, Yan X, Han G, Chen F, Song Z, Zhang J, Fan W, Yi C, Xu Z, Tan B, Yan W (2020) Highly luminescent copper nanoclusters stabilized by ascorbic acid for the quantitative detection of 4-Aminoazobenzene. Nanomaterials 10:1531. https://doi.org/10.3390/nano10081531
doi: 10.3390/nano10081531 pubmed: 32759865 pmcid: 7466603
Mo Q, Liu F, Gao J, Zhao M, Shao N (2018) Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters. Anal Chim Acta 1003:49–55. https://doi.org/10.1016/j.aca.2017.11.068
doi: 10.1016/j.aca.2017.11.068 pubmed: 29317029
Zhang M, Qiao J, Zhang S, Qi L (2018) Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine. Talanta 182:595–599. https://doi.org/10.1016/j.talanta.2018.02.035
doi: 10.1016/j.talanta.2018.02.035 pubmed: 29501198
Yu W, Hu Q, Kuang J, Liao Y, Cheng Z (2023) A ratiometric fluorescent based on orange light emitting copper nanoclusters for sensitive detection of O-phenylenediamine and rosmarinic acid. Chin J Anal Chem 51:100284. https://doi.org/10.1016/j.cjac.2023.100284
doi: 10.1016/j.cjac.2023.100284
Dadmehr M, Mortezaei M, Korouzhdehi B (2023) Dual mode fluorometric and colorimetric detection of matrix metalloproteinase MMP-9 as a cancer biomarker based on AuNPs@gelatin/AuNCs nanocomposite. Biosens Bioelectron 220:114889. https://doi.org/10.1016/j.bios.2022.114889
doi: 10.1016/j.bios.2022.114889 pubmed: 36368143

Auteurs

Jingxue Yuan (J)

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China.

Yao Feng (Y)

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China.

Qingqing Hu (Q)

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China.

Jianhua Kuang (J)

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China.

Zhengjun Cheng (Z)

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China. ncczj1112@126.com.
Institute of Applied Chemistry, China West Normal University, Nanchong, 637002, China. ncczj1112@126.com.

Classifications MeSH