Repurposing integrase inhibitors against human T-lymphotropic virus type-1: a computational approach.
HTLV-1
MD simulation
integrase
molecular docking
raltegravir
Journal
Journal of biomolecular structure & dynamics
ISSN: 1538-0254
Titre abrégé: J Biomol Struct Dyn
Pays: England
ID NLM: 8404176
Informations de publication
Date de publication:
17 Jan 2024
17 Jan 2024
Historique:
medline:
18
1
2024
pubmed:
18
1
2024
entrez:
18
1
2024
Statut:
aheadofprint
Résumé
Adult T-cell Lymphoma (ATL) is caused by the delta retrovirus family member known as Human T-cell Leukaemia Type I (HTLV-1). Due to the unavailability of any cure, the study gained motivation to identify some repurposed drugs against the virus. A quick and accurate method of screening licensed medications for finding a treatment for HTLV-1 is by cheminformatics drug repurposing in order to analyze a dataset of FDA approved integrase antivirals against HTLV-1 infection. To determine how the antiviral medications interacted with the important residues in the HTLV-1 integrase active regions, molecular docking modeling was used. The steady behavior of the ligands inside the active region was then confirmed by molecular dynamics for the probable receptor-drug complexes. Cabotegravir, Raltegravir and Elvitegravir had the best docking scores with the target, indicating that they can tightly bind to the HTLV-1 integrase. Moreover, MD simulation revealed that the Cabotegravir-HTLV-1, Raltegravir-HTLV-1 and Elvitegravir-HTLV-1 interactions were stable. It is obvious that more testing of these medicines in both clinical trials and experimental tests is necessary to demonstrate their efficacy against HTLV-1 infection.Communicated by Ramaswamy H. Sarma.
Identifiants
pubmed: 38234060
doi: 10.1080/07391102.2024.2304681
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM