The Nanoplasmonic Purcell Effect in Ultrafast and High-Light-Yield Perovskite Scintillators.

Purcell effect X-ray imaging nanophotonics plasmonics scintillators

Journal

Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358

Informations de publication

Date de publication:
18 Jan 2024
Historique:
revised: 14 01 2024
received: 12 09 2023
medline: 18 1 2024
pubmed: 18 1 2024
entrez: 18 1 2024
Statut: aheadofprint

Résumé

The development of X-ray scintillators with ultrahigh light yields and ultrafast response times is a long sought-after goal. In this work, we theoretically predict and experimentally demonstrate a fundamental mechanism that pushes the frontiers of ultrafast X-ray scintillator performance: the use of nanoscale-confined surface plasmon polariton modes to tailor the scintillator response time via the Purcell effect. By incorporating nanoplasmonic materials in scintillator devices, this work predicts over 10-fold enhancement in decay rate and 38% reduction in time resolution even with only a simple planar design. we experimentally demonstrate the nanoplasmonic Purcell effect using perovskite scintillators, enhancing the light yield by over 120% to 88

Identifiants

pubmed: 38235521
doi: 10.1002/adma.202309410
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2309410

Informations de copyright

This article is protected by copyright. All rights reserved.

Auteurs

Wenzheng Ye (W)

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore.

Zhihua Yong (Z)

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore.

Michael Go (M)

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore.

Dominik Kowal (D)

Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland.

Francesco Maddalena (F)

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore.

Liliana Tjahjana (L)

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore.

Hong Wang (H)

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore.

Arramel Arramel (A)

Nano Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia.

Christophe Dujardin (C)

Universite Claude Bernard Lyon 1, Institut Lumière Matière, UMR 5306 CNRS, Villeurbanne, F-69622, France.
Institut Universitaire de France, 1 Rue Descartes, Paris, Île-de-France, 75005, Paris, France.

Muhammad Danang Birowosuto (MD)

Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland.

Liang Jie Wong (LJ)

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore.

Classifications MeSH