Development of a gastric cancer risk calculator for questionnaire-based surveillance of Iranian dyspeptic patients.
Calculator
Gastric cancer
Logistic regression
Nonulcer dyspepsia
Risk prediction
Journal
BMC gastroenterology
ISSN: 1471-230X
Titre abrégé: BMC Gastroenterol
Pays: England
ID NLM: 100968547
Informations de publication
Date de publication:
18 Jan 2024
18 Jan 2024
Historique:
received:
22
11
2023
accepted:
02
01
2024
medline:
19
1
2024
pubmed:
19
1
2024
entrez:
18
1
2024
Statut:
epublish
Résumé
Gastric cancer (GC) is considered a silent killer, taking more than three quarters of a million lives annually. Therefore, prior to further costly and invasive diagnostic approaches, an initial GC risk screening is desperately in demand. In order to develop a simple risk scoring system, the demographic and lifestyle indices from 858 GC and 1132 non-ulcer dyspeptic (NUD) patients were analysed. We applied a multivariate logistic regression approach to identify the association between our target predictors and GC versus NUD. The model performance in classification was assessed by receiver operating characteristic (ROC) analysis. Our questionnaire covering 64 predictors, included known risk factors, such as demographic features, dietary habits, self-reported medical status, narcotics use, and SES indicators. Our model segregated GC from NUD patients with the sensitivity, specificity, and accuracy rates of 85.89, 63.9, and 73.03%, respectively, which was confirmed in the development dataset (AUC equal to 86.37%, P < 0.0001). Predictors which contributed most to our GC risk calculator, based on risk scores (RS) and shared percentages (SP), included: 1) older age group [> 70 (RS:+ 241, SP:7.23), 60-70 (RS:+ 221, SP:6.60), 50-60 (RS:+ 134, SP:4.02), 2) history of gastrointestinal cancers (RS:+ 173, SP:5.19), 3) male gender (RS:+ 119, SP:3.55), 4) non-Fars ethnicity (RS:+ 89, SP:2.66), 5) illiteracy of both parents (RS:+ 78, SP:2.38), 6) rural residence (RS:+ 77, SP:2.3), and modifiable dietary behaviors (RS:+ 32 to + 53, SP:0.96 to 1.58). Our developed risk calculator provides a primary screening step, prior to the subsequent costly and invasive measures. Furthermore, public awareness regarding modifiable risk predictors may encourage and promote lifestyle adjustments and healthy behaviours.
Sections du résumé
BACKGROUND
BACKGROUND
Gastric cancer (GC) is considered a silent killer, taking more than three quarters of a million lives annually. Therefore, prior to further costly and invasive diagnostic approaches, an initial GC risk screening is desperately in demand.
METHODS
METHODS
In order to develop a simple risk scoring system, the demographic and lifestyle indices from 858 GC and 1132 non-ulcer dyspeptic (NUD) patients were analysed. We applied a multivariate logistic regression approach to identify the association between our target predictors and GC versus NUD. The model performance in classification was assessed by receiver operating characteristic (ROC) analysis. Our questionnaire covering 64 predictors, included known risk factors, such as demographic features, dietary habits, self-reported medical status, narcotics use, and SES indicators.
RESULTS
RESULTS
Our model segregated GC from NUD patients with the sensitivity, specificity, and accuracy rates of 85.89, 63.9, and 73.03%, respectively, which was confirmed in the development dataset (AUC equal to 86.37%, P < 0.0001). Predictors which contributed most to our GC risk calculator, based on risk scores (RS) and shared percentages (SP), included: 1) older age group [> 70 (RS:+ 241, SP:7.23), 60-70 (RS:+ 221, SP:6.60), 50-60 (RS:+ 134, SP:4.02), 2) history of gastrointestinal cancers (RS:+ 173, SP:5.19), 3) male gender (RS:+ 119, SP:3.55), 4) non-Fars ethnicity (RS:+ 89, SP:2.66), 5) illiteracy of both parents (RS:+ 78, SP:2.38), 6) rural residence (RS:+ 77, SP:2.3), and modifiable dietary behaviors (RS:+ 32 to + 53, SP:0.96 to 1.58).
CONCLUSION
CONCLUSIONS
Our developed risk calculator provides a primary screening step, prior to the subsequent costly and invasive measures. Furthermore, public awareness regarding modifiable risk predictors may encourage and promote lifestyle adjustments and healthy behaviours.
Identifiants
pubmed: 38238682
doi: 10.1186/s12876-024-03123-z
pii: 10.1186/s12876-024-03123-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
39Informations de copyright
© 2024. The Author(s).
Références
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
pubmed: 33538338
doi: 10.3322/caac.21660
Alvarez EM, Force LM, Xu R, Compton K, Lu D, Henrikson HJ, Kocarnik JM, Harvey JD, Pennini A, Dean FE. The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the global burden of disease study 2019. Lancet Oncol. 2022;23(1):27–52.
doi: 10.1016/S1470-2045(21)00581-7
Thrift AP, Nguyen TH. Gastric Cancer epidemiology. Gastrointest Endosc Clin N Am. 2021;31(3):425–39.
pubmed: 34053631
doi: 10.1016/j.giec.2021.03.001
Bertuccio P, Chatenoud L, Levi F, Praud D, Ferlay J, Negri E, Malvezzi M, La Vecchia C. Recent patterns in gastric cancer: a global overview. Int J Cancer. 2009;125(3):666–73.
pubmed: 19382179
doi: 10.1002/ijc.24290
Bertuccio P, Rosato V, Andreano A, Ferraroni M, Decarli A, Edefonti V, La Vecchia C. Dietary patterns and gastric cancer risk: a systematic review and meta-analysis. Ann Oncol. 2013;24(6):1450–8.
pubmed: 23524862
doi: 10.1093/annonc/mdt108
Du S, Li Y, Su Z, Shi X, Johnson NL, Li P, Zhang Y, Zhang Q, Wen L, Li K, et al. Index-based dietary patterns in relation to gastric cancer risk: a systematic review and meta-analysis. Br J Nutr. 2020;123(9):964–74.
pubmed: 31767045
doi: 10.1017/S0007114519002976
de Menezes RF, Bergmann A, Thuler LC. Alcohol consumption and risk of cancer: a systematic literature review. Asian Pac J Cancer Prev. 2013;14(9):4965–72.
pubmed: 24175760
doi: 10.7314/APJCP.2013.14.9.4965
Sasco AJ, Secretan MB, Straif K. Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer. 2004;45(Suppl 2):S3–9.
pubmed: 15552776
doi: 10.1016/j.lungcan.2004.07.998
Ladeiras-Lopes R, Pereira AK, Nogueira A, Pinheiro-Torres T, Pinto I, Santos-Pereira R, Lunet N. Smoking and gastric cancer: systematic review and meta-analysis of cohort studies. Cancer Causes Control. 2008;19(7):689–701.
pubmed: 18293090
doi: 10.1007/s10552-008-9132-y
Dong J, Thrift AP. Alcohol, smoking and risk of oesophago-gastric cancer. Best Pract Res Clin Gastroenterol. 2017;31(5):509–17.
pubmed: 29195670
doi: 10.1016/j.bpg.2017.09.002
Cavatorta O, Scida S, Miraglia C, Barchi A, Nouvenne A, Leandro G, Meschi T, De' Angelis GL, Di Mario F. Epidemiology of gastric cancer and risk factors. Acta Biomed. 2018;89(8-s):82–7.
pubmed: 30561423
Machlowska J, Baj J, Sitarz M, Maciejewski R, Sitarz R. Gastric Cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 2020;21(11):4012.
pubmed: 32512697
pmcid: 7312039
doi: 10.3390/ijms21114012
Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. J Surg Oncol. 2013;107(3):230–6.
pubmed: 23129495
doi: 10.1002/jso.23262
Yusefi AR, Bagheri Lankarani K, Bastani P, Radinmanesh M, Kavosi Z. Risk factors for gastric Cancer: a systematic review. Asian Pac J Cancer Prev. 2018;19(3):591–603.
pubmed: 29579788
pmcid: 5980829
Lin Y, Zheng Y, Wang HL, Wu J. Global patterns and trends in gastric Cancer incidence rates (1988-2012) and predictions to 2030. Gastroenterology. 2021;161(1):116–127.e118.
pubmed: 33744306
doi: 10.1053/j.gastro.2021.03.023
National Research Council Committee on Risk P. Communication. In: Improving Risk Communication. Washington (DC): National Academies Press (US) Copyright © 1989 by the National Academy of Sciences; 1989.
In: Fundamentals of Clinical Data Science. edn. Edited by Kubben P, Dumontier M, Dekker A. Cham (CH): Springer Copyright 2019, The Editor(s) (if applicable) and The Author(s). This book is an open access publication. 2019. ISBN 978-3-319-99712-4, ISBN 978-3-319-99713-1 (eBook).
Mishra GA, Dhivar HD, Gupta SD, Kulkarni SV, Shastri SS. A population-based screening program for early detection of common cancers among women in India - methodology and interim results. Indian J Cancer. 2015;52(1):139–45.
pubmed: 26838003
doi: 10.4103/0019-509X.175581
Li X, Bian D, Yu J, Li M, Zhao D. Using machine learning models to improve stroke risk level classification methods of China national stroke screening. BMC Med Inform Decis Mak. 2019;19(1):261.
pubmed: 31822270
pmcid: 6902572
doi: 10.1186/s12911-019-0998-2
Heikes KE, Eddy DM, Arondekar B, Schlessinger L. Diabetes risk calculator: a simple tool for detecting undiagnosed diabetes and pre-diabetes. Diabetes Care. 2008;31(5):1040–5.
pubmed: 18070993
doi: 10.2337/dc07-1150
Driver JA, Gaziano JM, Gelber RP, Lee IM, Buring JE, Kurth T. Development of a risk score for colorectal cancer in men. Am J Med. 2007;120(3):257–63.
pubmed: 17349449
doi: 10.1016/j.amjmed.2006.05.055
Lloyd-Jones DM, Wilson PW, Larson MG, Beiser A, Leip EP, D'Agostino RB, Levy D. Framingham risk score and prediction of lifetime risk for coronary heart disease. Am J Cardiol. 2004;94(1):20–4.
pubmed: 15219502
doi: 10.1016/j.amjcard.2004.03.023
Wittekind C, Compton CC, Greene FL, Sobin LH. TNM residual tumor classification revisited. Cancer. 2002;94(9):2511–6.
pubmed: 12015777
doi: 10.1002/cncr.10492
Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.
pubmed: 14320675
doi: 10.1111/apm.1965.64.1.31
Zhang Z. Multiple imputation with multivariate imputation by chained equation (MICE) package. Ann Transl Med. 2016;4(2):30.
pubmed: 26889483
pmcid: 4731595
Yucel RM. Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philos Trans A Math Phys Eng Sci. 1874;2008(366):2389–403.
van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007;16(3):219–42.
pubmed: 17621469
doi: 10.1177/0962280206074463
Wahl S, Boulesteix AL, Zierer A, Thorand B, van de Wiel MA. Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation. BMC Med Res Methodol. 2016;16(1):144.
pubmed: 27782817
pmcid: 5080703
doi: 10.1186/s12874-016-0239-7
Kleinbaum DG, Dietz K, Gail M, Klein M, Klein M. Logistic regression. Springer; 2002.
Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med. 2013;4(2):627–35.
pubmed: 24009950
pmcid: 3755824
Refaeilzadeh P, Tang L, Liu H, Liu L. Encyclopedia of database systems. In: Cross-validation. Springer; 2009. p. 532–8.
Blaha MJ. The critical importance of risk score calibration: time for transformative approach to risk score validation? J Am Coll Cardiol. 2016;67(18):2131–4.
pubmed: 27151344
doi: 10.1016/j.jacc.2016.03.479
Landwehr JM, Pregibon D, Shoemaker AC. Graphical methods for assessing logistic regression models. J Am Stat Assoc. 1984;79(385):61–71.
doi: 10.1080/01621459.1984.10477062
Zhu X, Lv J, Zhu M, Yan C, Deng B, Yu C, Guo Y, Ni J, She Q, Wang T, et al. Development, validation, and evaluation of a risk assessment tool for personalized screening of gastric cancer in Chinese populations. BMC Med. 2023;21(1):159.
pubmed: 37106459
pmcid: 10142220
doi: 10.1186/s12916-023-02864-0
Trinh TTK, Lee K, Oh JK, Suh M, Jun JK, Choi KS. Cluster of lifestyle risk factors for stomach cancer and screening behaviors among Korean adults. Sci Rep. 2023;13(1):17503.
pubmed: 37845248
pmcid: 10579218
doi: 10.1038/s41598-023-44470-3
Liu Q, Zeng X, Wang W, Huang RL, Huang YJ, Liu S, Huang YH, Wang YX, Fang QH, He G, et al. Awareness of risk factors and warning symptoms and attitude towards gastric cancer screening among the general public in China: a cross-sectional study. BMJ Open. 2019;9(7):e029638.
pubmed: 31340970
pmcid: 6661546
doi: 10.1136/bmjopen-2019-029638
Necula L, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, Bleotu C, Diaconu CC, Chivu-Economescu M. Recent advances in gastric cancer early diagnosis. World J Gastroenterol. 2019;25(17):2029–44.
pubmed: 31114131
pmcid: 6506585
doi: 10.3748/wjg.v25.i17.2029
Pasechnikov V, Chukov S, Fedorov E, Kikuste I, Leja M. Gastric cancer: prevention, screening and early diagnosis. World J Gastroenterol. 2014;20(38):13842–62.
pubmed: 25320521
pmcid: 4194567
doi: 10.3748/wjg.v20.i38.13842
Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomark Prev. 2014;23(5):700–13.
doi: 10.1158/1055-9965.EPI-13-1057
Correa P. Gastric cancer: overview. Gastroenterol Clin N Am. 2013;42(2):211–7.
doi: 10.1016/j.gtc.2013.01.002
Ang TL, Fock KM. Clinical epidemiology of gastric cancer. Singap Med J. 2014;55(12):621–8.
doi: 10.11622/smedj.2014174
Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396(10251):635–48.
pubmed: 32861308
doi: 10.1016/S0140-6736(20)31288-5
Venerito M, Link A, Rokkas T, Malfertheiner P. Gastric cancer - clinical and epidemiological aspects. Helicobacter. 2016;21(Suppl 1):39–44.
pubmed: 27531538
doi: 10.1111/hel.12339
Pelucchi C, Lunet N, Boccia S, Zhang ZF, Praud D, Boffetta P, Levi F, Matsuo K, Ito H, Hu J, et al. The stomach cancer pooling (StoP) project: study design and presentation. Eur J Cancer Prev. 2015;24(1):16–23.
pubmed: 24566154
doi: 10.1097/CEJ.0000000000000017
Choi Y, Kim N, Kim KW, Jo HH, Park J, Yoon H, Shin CM, Park YS, Lee DH. Gastric Cancer in older patients: a retrospective study and literature review. Ann Geriatr Med Res. 2022;26(1):33–41.
pubmed: 35298880
pmcid: 8984166
doi: 10.4235/agmr.21.0144
Lee JG, Kim SA, Eun CS, Han DS, Kim YS, Choi BY, Song KS, Kim HJ, Park CH. Impact of age on stage-specific mortality in patients with gastric cancer: a long-term prospective cohort study. PLoS One. 2019;14(8):e0220660.
pubmed: 31369631
pmcid: 6675285
doi: 10.1371/journal.pone.0220660
Chung HW, Noh SH, Lim JB. Analysis of demographic characteristics in 3242 young age gastric cancer patients in Korea. World J Gastroenterol. 2010;16(2):256–63.
pubmed: 20066747
pmcid: 2806566
doi: 10.3748/wjg.v16.i2.256
Choi Y, Kim N, Kim KW, Jo HH, Park J, Yoon H, Shin CM, Park YS, Lee DH, Oh HJ, et al. Sex-based differences in histology, staging, and prognosis among 2983 gastric cancer surgery patients. World J Gastroenterol. 2022;28(9):933–47.
pubmed: 35317055
pmcid: 8908285
doi: 10.3748/wjg.v28.i9.933
Mohebbi M, Mahmoodi M, Wolfe R, Nourijelyani K, Mohammad K, Zeraati H, Fotouhi A. Geographical spread of gastrointestinal tract cancer incidence in the Caspian Sea region of Iran: spatial analysis of cancer registry data. BMC Cancer. 2008;8:137.
pubmed: 18479519
pmcid: 2397428
doi: 10.1186/1471-2407-8-137
Malekzadeh R, Derakhshan MH, Malekzadeh Z. Gastric cancer in Iran: epidemiology and risk factors. Arch Iran Med. 2009;12(6):576–83.
pubmed: 19877751
Kalan Farmanfarma K, Mahdavifar N, Hassanipour S, Salehiniya H. Epidemiologic study of gastric Cancer in Iran: a systematic review. Clin Exp Gastroenterol. 2020;13:511–42.
pubmed: 33177859
pmcid: 7652066
doi: 10.2147/CEG.S256627
Tam YH, Yeung CK, Lee KH, Sihoe JD, Chan KW, Cheung ST, Mou JW. A population-based study of Helicobacter pylori infection in Chinese children resident in Hong Kong: prevalence and potential risk factors. Helicobacter. 2008;13(3):219–24.
pubmed: 18466397
doi: 10.1111/j.1523-5378.2008.00603.x
Nouraie M, Latifi-Navid S, Rezvan H, Radmard AR, Maghsudlu M, Zaer-Rezaii H, Amini S, Siavoshi F, Malekzadeh R. Childhood hygienic practice and family education status determine the prevalence of Helicobacter pylori infection in Iran. Helicobacter. 2009;14(1):40–6.
pubmed: 19191895
doi: 10.1111/j.1523-5378.2009.00657.x
Lagergren J, Andersson G, Talbäck M, Drefahl S, Bihagen E, Härkönen J, Feychting M, Ljung R. Marital status, education, and income in relation to the risk of esophageal and gastric cancer by histological type and site. Cancer. 2016;122(2):207–12.
pubmed: 26447737
doi: 10.1002/cncr.29731
Stephens MR, Blackshaw GR, Lewis WG, Edwards P, Barry JD, Hopper NA, Allison MC. Influence of socio-economic deprivation on outcomes for patients diagnosed with gastric cancer. Scand J Gastroenterol. 2005;40(11):1351–7.
pubmed: 16334445
doi: 10.1080/00365520510023666
Slavin TP, Weitzel JN, Neuhausen SL, Schrader KA, Oliveira C, Karam R. Genetics of gastric cancer: what do we know about the genetic risks? Transl Gastroenterol Hepatol. 2019;4:55.
pubmed: 31463414
pmcid: 6691077
doi: 10.21037/tgh.2019.07.02
Ren JS, Freedman ND, Kamangar F, Dawsey SM, Hollenbeck AR, Schatzkin A, Abnet CC. Tea, coffee, carbonated soft drinks and upper gastrointestinal tract cancer risk in a large United States prospective cohort study. Eur J Cancer. 2010;46(10):1873–81.
pubmed: 20395127
pmcid: 2891563
doi: 10.1016/j.ejca.2010.03.025
Sun WY, Yang H, Wang XK, Fan JH, Qiao YL, Taylor PR. The association between family history of upper gastrointestinal Cancer and the risk of death from upper gastrointestinal Cancer-based on Linxian dysplasia nutrition intervention trial (NIT) cohort. Front Oncol. 2022;12:897534.
pubmed: 35756616
pmcid: 9213690
doi: 10.3389/fonc.2022.897534
Thrift AP, Jove AG, Liu Y, Tan MC, El-Serag HB. Associations of duration, intensity, and quantity of smoking with risk of gastric intestinal metaplasia. J Clin Gastroenterol. 2022;56(1):e71–6.
pubmed: 33337636
pmcid: 8875544
doi: 10.1097/MCG.0000000000001479
Mao XQ, Jia XF, Zhou G, Li L, Niu H, Li FL, Liu HY, Zheng R, Xu N. Green tea drinking habits and gastric cancer in Southwest China. Asian Pac J Cancer Prev. 2011;12(9):2179–82.
pubmed: 22296352
Xu L, Zhang X, Lu J, Dai JX, Lin RQ, Tian FX, Liang B, Guo YN, Luo HY, Li N, et al. The effects of dinner-to-bed time and post-dinner walk on gastric Cancer across different age groups: a multicenter case-control study in Southeast China. Medicine (Baltimore). 2016;95(16):e3397.
pubmed: 27100427
doi: 10.1097/MD.0000000000003397
Huang L, Chen L, Gui ZX, Liu S, Wei ZJ, Xu AM. Preventable lifestyle and eating habits associated with gastric adenocarcinoma: a case-control study. J Cancer. 2020;11(5):1231–9.
pubmed: 31956369
pmcid: 6959061
doi: 10.7150/jca.39023
Wu B, Yang D, Yang S, Zhang G. Dietary salt intake and gastric Cancer risk: a systematic review and Meta-analysis. Front Nutr. 2021;8:801228.
pubmed: 34957192
pmcid: 8692376
doi: 10.3389/fnut.2021.801228
Thapa S, Fischbach LA, Delongchamp R, Faramawi MF, Orloff M. Association between dietary salt intake and progression in the gastric precancerous process. Cancers (Basel). 2019;11(4):467.
pubmed: 30987215
pmcid: 6520970
doi: 10.3390/cancers11040467
Ge S, Feng X, Shen L, Wei Z, Zhu Q, Sun J. Association between habitual dietary salt intake and risk of gastric Cancer: a systematic review of observational studies. Gastroenterol Res Pract. 2012;2012:808120.
pubmed: 23125851
pmcid: 3485508
doi: 10.1155/2012/808120
Shen JG, Jin LD, Dong MJ, Wang LB, Zhao WH, Shen J. Low level of serum high-density lipoprotein cholesterol in gastric cancer correlates with cancer progression but not survival. Transl Cancer Res. 2020;9(10):6206–13.
pubmed: 35117231
pmcid: 8798992
doi: 10.21037/tcr-20-1220
Miao P, Guan L. Association of Dietary Cholesterol Intake with Risk of gastric Cancer: a systematic review and Meta-analysis of observational studies. Front Nutr. 2021;8:722450.
pubmed: 34458311
pmcid: 8387575
doi: 10.3389/fnut.2021.722450
Shin HJ, Roh CK, Son SY, Hoon H, Han SU. Prognostic value of hypocholesterolemia in patients with gastric cancer. Asian J Surg. 2021;44(1):72–9.
pubmed: 32912730
doi: 10.1016/j.asjsur.2020.08.014
Pih GY, Gong EJ, Choi JY, Kim MJ, Ahn JY, Choe J, Bae SE, Chang HS, Na HK, Lee JH, et al. Associations of serum lipid level with gastric Cancer risk, pathology, and prognosis. Cancer Res Treat. 2021;53(2):445–56.
pubmed: 33253515
doi: 10.4143/crt.2020.599