Reproducibility and Repeatability of Intravoxel Incoherent Motion MRI Acquisition Methods in Liver.

diffusion fibrosis intervoxel incoherent motion liver

Journal

Journal of magnetic resonance imaging : JMRI
ISSN: 1522-2586
Titre abrégé: J Magn Reson Imaging
Pays: United States
ID NLM: 9105850

Informations de publication

Date de publication:
19 Jan 2024
Historique:
revised: 08 01 2024
received: 05 10 2023
accepted: 09 01 2024
pubmed: 19 1 2024
medline: 19 1 2024
entrez: 19 1 2024
Statut: aheadofprint

Résumé

Intravoxel incoherent motion (IVIM) diffusion weighted MRI (DWI) has potential for evaluating hepatic fibrosis but image acquisition technique influence on diffusion parameter estimation bears investigation. To minimize variability and maximize repeatably in abdominal DWI in terms of IVIM parameter estimates. Prospective test-retest and image quality comparison. Healthy volunteers (3F/7M, 29.9 ± 12.9 years) and Family Study subjects (18F/12M, 51.7 ± 16.7 years), without and with liver steatosis. Abdominal single-shot echo-planar imaging (EPI) and simultaneous multi-slice (SMS) DWI sequences with respiratory triggering (RT), breath-holding (BH), and navigator echo (NE) at 3 Tesla. SMS-BH, EPI-NE, and SMS-RT data from twice-scanned healthy volunteers were analyzed using 6 × b-values (0-800 s⋅mm Coefficients of variation (CoV) and Bland Altman analyses were performed for test-retest repeatability. Interclass correlation coefficient (ICC) assessed interobserver agreement with P < 0.05 deemed significant. Within-subject CoVs among volunteers (N = 10) for f and D Simultaneous multislice acquisitions had significantly less variability and higher ICCs of D 2 TECHNICAL EFFICACY: Stage 1.

Sections du résumé

BACKGROUND BACKGROUND
Intravoxel incoherent motion (IVIM) diffusion weighted MRI (DWI) has potential for evaluating hepatic fibrosis but image acquisition technique influence on diffusion parameter estimation bears investigation.
PURPOSE OBJECTIVE
To minimize variability and maximize repeatably in abdominal DWI in terms of IVIM parameter estimates.
STUDY TYPE METHODS
Prospective test-retest and image quality comparison.
SUBJECTS METHODS
Healthy volunteers (3F/7M, 29.9 ± 12.9 years) and Family Study subjects (18F/12M, 51.7 ± 16.7 years), without and with liver steatosis.
FIELD STRENGTH/SEQUENCE UNASSIGNED
Abdominal single-shot echo-planar imaging (EPI) and simultaneous multi-slice (SMS) DWI sequences with respiratory triggering (RT), breath-holding (BH), and navigator echo (NE) at 3 Tesla.
ASSESSMENT RESULTS
SMS-BH, EPI-NE, and SMS-RT data from twice-scanned healthy volunteers were analyzed using 6 × b-values (0-800 s⋅mm
STATISTICAL TESTS METHODS
Coefficients of variation (CoV) and Bland Altman analyses were performed for test-retest repeatability. Interclass correlation coefficient (ICC) assessed interobserver agreement with P < 0.05 deemed significant.
RESULTS RESULTS
Within-subject CoVs among volunteers (N = 10) for f and D
DATA CONCLUSION CONCLUSIONS
Simultaneous multislice acquisitions had significantly less variability and higher ICCs of D
EVIDENCE LEVEL METHODS
2 TECHNICAL EFFICACY: Stage 1.

Identifiants

pubmed: 38240167
doi: 10.1002/jmri.29249
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIH HHS
ID : R01DK097554
Pays : United States
Organisme : NIMHD NIH HHS
ID : R01 MD012564
Pays : United States
Organisme : NCATS NIH HHS
ID : TL1 TR002647
Pays : United States
Organisme : NIH HHS
ID : R01MD012564
Pays : United States
Organisme : NHGRI NIH HHS
ID : U54 HG013247
Pays : United States

Informations de copyright

© 2024 International Society for Magnetic Resonance in Medicine.

Références

Rinella ME, Lazarus JV, Ratziu V, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Ann Hepatol 2023;24:101-133.
Neuberger J, Patel J, Caldwell H, et al. Guidelines on the use of liver biopsy in clinical practice from the British Society of Gastroenterology, the Royal College of Radiologists, and the Royal College of Pathology. Gut 2020;69:1382-1403.
Vali Y, Lee J, Boursier J, et al. Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: A systematic review and meta-analysis. J Hepatol 2020;73:252-262.
Le Bihan D, Ichikawa S, Motosugi U. Diffusion and intravoxel incoherent motion MR imaging-based virtual elastography: A hypothesis-generating study in the liver. Radiology 2017;285:609-619.
Frey E, Kroy K. Brownian motion: A paradigm of soft matter and biological physics. Ann Phys 2006;14:20-50.
Le Bihan D, Breton E, Lallemand D, Aubin M-L, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505.
Fu F, Li X, Chen C, et al. Non-invasive assessment of hepatic fibrosis: Comparison of MR elastography to transient elastography and intravoxel incoherent motion diffusion-weighted MRI. Abdom Radiol 2020;45:73-82.
Lee Y, Lee SS, Kim N, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: Effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology 2015;274:405-415.
Hadizadeh F, Faghihimani E, Adibi P. Nonalcoholic fatty liver disease: Diagnostic biomarkers. World J Gastrointest Pathophysiol 2017;8:11-26.
European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. Diabetologia 2016;59:1121-1140.
Pei Y, Xie S, Li W, et al. Evaluation of simultaneous-multislice diffusion-weighted imaging of liver at 3.0 T with different breathing schemes. Abdom Radiol 2020;45:3716-3729.
Taron J, Martirosian P, Erb M, et al. Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences. J Magn Reson Imag 2016;44:865-879.
Mitchell BD, Kammerer CM, Blangero J, et al. Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans: The San Antonio Family Heart Study. Circulation 1996;94:2159-2170.
Li YT, Cercueil JP, Yuan J, Chen W, Loffroy R, Wáng YX. Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: A comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant Imaging Med Surg 2017;7:59-78.
Takahara T, Kwee TC, Van Leeuwen MS, et al. Diffusion-weighted magnetic resonance imaging of the liver using tracking only navigator echo: Feasibility study. Invest Radiol 2010;45:57-63.
Gurney-Champion OJ, Klaassen R, Froeling M, et al. Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients. PloS One 2018;13:e0194590. https://doi.org/10.1088/1361-6560/ab1786.
QIBA Profile Conformance Testing DWI MR Supplement 1. p. 7, eq 2. Quantitative Imaging Biomarkers Alliance, Version 20210401.
Cui Y, Dyvorne H, Besa C, Cooper N, Taouli B. IVIM diffusion-weighted imaging of the liver at 3.0T: Comparison with 1.5T. Eur J Radiol Open 2015;2:123-128. https://doi.org/10.1016/j.ejro.2015.08.001.
Jenkin R. Contrast signal to noise ratio. Proc. IS&T Int'l. Symp. on Electronic Imaging: Autonomous Vehicles and Machines. Society for Imaging Science and Technology, Springfield, VA, USA; 2021, p 186-1-186-6. https://doi.org/10.2352/ISSN.2470-1173.2021.17.AVM-186.
Dietrich O, Raya JG, Reeder SB, Ingrisch M, Reiser MF, Schoenberg SO. Influence of multichannel combination, parallel imaging, and other reconstruction techniques on MRI noise characteristics. Magn Reson Imag 2008;26:754-762.
Tabelow K, Clayden JD, De Micheaux PL, Polzehl J, Schmid VJ, Whitcher B. Image analysis and statistical inference in neuroimaging with R. Neuroimage 2011;55:1686-1693.
Zhang Y, Jin N, Deng J, et al. Intra-voxel incoherent motion MRI in rodent model of diethylnitrosamine-induced liver fibrosis. Magn Reason Imag 2013;31:1017-1021.
Cieszanowski A, Pasicz K, Podgórska J, et al. Reproducibility of intravoxel incoherent motion of liver on a 3.0T scanner: Free-breathing and respiratory-triggered sequences acquired with different numbers of excitations. Pol J Radiology 2018;83:e437-e445. https://doi.org/10.5114/pjr.2018.79651.
Führes T, Riexinger AJ, Loh M, et al. Echo time dependence of biexponential and triexponential intravoxel incoherent motion parameters in the liver. Magn Reson Med 2022;87:859-871. https://doi.org/10.1002/mrm.28996.
Loh M, Führes T, Stuprich C, Uder M, Saake M, Laun FB. Influence of saturation effects on biexponential liver intravoxel incoherent motion. Magn Reson Med 2023;90:270-279. https://doi.org/10.1002/mrm.29622.
Jerome NP, Orton MR, d'Arcy JA, Collins DJ, Koh DM, Leach MO. Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: Effect on ADC and IVIM statistics. J Magn Reson Imag 2014;39:235-240.
Iima M, Yano K, Kataoka M, et al. Quantitative non-Gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: Differentiation of malignant and benign breast lesions. Invest Radiol 2015;50:205-211.
Dyvorne H, Jajamovich G, Kakite S, Kuehn B, Taouli B. Intravoxel incoherent motion diffusion imaging of the liver: Optimal b-value subsampling and impact on parameter precision and reproducibility. Eur J Radiol 2014;83:2109-2113.
Andreou A, Koh DM, Collins DJ, et al. Measurement reproducibility of perfusion fraction and pseudo diffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 2013;23:428-434.
Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 2010;64:1580-1585.
Chevallier O, Zhou N, He J, Loffroy R, Wáng YXJ. Removal of evidential motion-contaminated and poorly fitted image data improves IVIM diffusion MRI parameter scan-rescan reproducibility. Acta Radiol 2018;59:1157-1167.
Taouli B, Chouli M, Martin AJ, Qayyum A, Coakley FV, Vilgrain V. Chronic hepatitis: Role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation. J Magn Reson Imag 2008;28:89-95.
Parente DB, Paiva FF, Neto JA, et al. Intravoxel incoherent motion diffusion weighted MR imaging at 3.0 T: Assessment of steatohepatitis and fibrosis compared with liver biopsy in type 2 diabetic patients. PloS One 2015;10:e0125653.
Ter Voert EE, Delso G, Porto M, Huellner M, Veit-Haibach P. Intravoxel incoherent motion protocol evaluation and data quality in normal and malignant liver tissue and comparison to the literature. Invest Radiol 2016;51:90-99.
Riexinger A, Martin J, Wetscherek A, et al. An optimized b-value distribution for triexponential intravoxel incoherent motion (IVIM) in the liver. Magn Reson Med 2021;85:2095-2108.
Wetscherek A, Stieltjes B, Laun FB. Flow-compensated intravoxel incoherent motion diffusion imaging. Magn Reson Med 2015;74:410-419.
Gurney-Champion OJ, Rauh SS, Harrington K, Oelfke U, Laun FB, Wetscherek A. Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: An accurate and precise clinically feasible protocol. Magn Reson Med 2020;83:1003-1015.
Simchick G, Geng R, Zhang Y, Hernando D. b value and first-order motion moment optimized data acquisition for repeatable quantitative intravoxel incoherent motion DWI. Magn Reson Med 2022;87:2724-2740.
Simchick G, Hernando D. Precision of region of interest-based tri-exponential intravoxel incoherent motion quantification and the role of the Intervoxel spatial distribution of flow velocities. Magn Reson Med 2022;88:2662-2678.
Chevallier O, Wáng YXJ, Guillen K, Pellegrinelli J, Cercueil JP, Loffroy R. Evidence of tri-exponential decay for liver intravoxel incoherent motion MRI: A review of published results and limitations. Diagnostics (Basel) 2021;11:379. https://doi.org/10.3390/diagnostics11020379.

Auteurs

Juan A Vasquez (JA)

Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.

Marissa Brown (M)

Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.

Mary Woolsey (M)

Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.

Mohammad Abdul-Ghani (M)

Diabetes Division, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.

Venkata Katabathina (V)

Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.

Shengwen Deng (S)

Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.

John Blangero (J)

Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Texas, USA.

Geoffrey D Clarke (GD)

Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.

Classifications MeSH