Old and new strategies in therapy and diagnosis against fungal infections.
Antifungal diagnostics
Antifungal drugs
Antifungal target
Antifungal treatment
Fungi
Resistance
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
19 Jan 2024
19 Jan 2024
Historique:
received:
26
06
2023
accepted:
05
12
2023
revised:
05
12
2023
medline:
19
1
2024
pubmed:
19
1
2024
entrez:
19
1
2024
Statut:
epublish
Résumé
Fungal infections represent a serious global health threat. The new emerging pathogens and the spread of different forms of resistance are now hardly challenging the tools available in therapy and diagnostics. With the commonly used diagnoses, fungal identification is often slow and inaccurate, and, on the other hand, some drugs currently used as treatments are significantly affected by the decrease in susceptibility. Herein, the antifungal arsenal is critically summarized. Besides describing the old approaches and their mechanisms, advantages, and limitations, the focus is dedicated to innovative strategies which are designed, identified, and developed to take advantage of the discrepancies between fungal and host cells. Relevant pathways and their role in survival and virulence are discussed as their suitability as sources of antifungal targets. In a similar way, molecules with antifungal activity are reported as potential agents/precursors of the next generation of antimycotics. Particular attention was devoted to biotechnological entities, to their novelty and reliability, to drug repurposing and restoration, and to combinatorial applications yielding significant improvements in efficacy. KEY POINTS: • New antifungal agents and targets are needed to limit fungal morbidity and mortality. • Therapeutics and diagnostics suffer of delays in innovation and lack of targets. • Biologics, drug repurposing and combinations are the future of antifungal treatments.
Identifiants
pubmed: 38240822
doi: 10.1007/s00253-023-12884-8
pii: 10.1007/s00253-023-12884-8
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
147Informations de copyright
© 2024. The Author(s).
Références
Aeed PA, Young CL, Nagiec MM, Elhammer AP (2009) Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin A. Antimicrob Agents Chemother 53:496–504. https://doi.org/10.1128/AAC.00633-08
doi: 10.1128/AAC.00633-08
pubmed: 19047657
Allen D, Wilson D, Drew R, Perfect J (2015) Azole antifungals: 35 years of invasive fungal infection management. Expert Rev Anti Infect Ther 13:787–798. https://doi.org/10.1586/14787210.2015.1032939
doi: 10.1586/14787210.2015.1032939
pubmed: 25843556
Amarsaikhan N, Albrecht-Eckardt D, Sasse C, Braus GH, Ogel ZB, Kniemeyer O (2017) Proteomic profiling of the antifungal drug response of Aspergillus fumigatus to voriconazole. Int J Med Microbiol IJMM 307:398–408. https://doi.org/10.1016/j.ijmm.2017.07.011
doi: 10.1016/j.ijmm.2017.07.011
pubmed: 28811086
Antoszczak M, Huczyński A (2019) Salinomycin and its derivatives – a new class of multiple-targeted “magic bullets”. Eur J Med Chem 176:208–227. https://doi.org/10.1016/j.ejmech.2019.05.031
doi: 10.1016/j.ejmech.2019.05.031
pubmed: 31103901
Aris P, Wei Y, Mohamadzadeh M, Xia X (2022) Griseofulvin: an updated overview of old and current knowledge. Mol Basel Switz 27:7034. https://doi.org/10.3390/molecules27207034
doi: 10.3390/molecules27207034
Artunduaga Bonilla JJ, Honorato L, Haranahalli K, Dib Ferreira Gremião I, Pereira SA, Guimarães A, de Souza Baptista AR, de Melo Tavares P, Rodrigues ML, Miranda K, Ojima I (2021) Antifungal activity of acylhydrazone derivatives against Sporothrix spp. Antimicrob Agents Chemother 65:e02593-20, AAC.02593-20. https://doi.org/10.1128/AAC.02593-20
doi: 10.1128/AAC.02593-20
pubmed: 33593845
pmcid: 8092869
Aslam R, Atindehou M, Lavaux T, Haïkel Y, Schneider F, Metz-Boutigue M-H (2012) Chromogranin A-derived peptides are involved in innate immunity. Curr Med Chem 19:4115–4123. https://doi.org/10.2174/092986712802430063
doi: 10.2174/092986712802430063
pubmed: 22834801
Bastos RW, Rossato L, Valero C, Lagrou K, Colombo AL, Goldman GH (2019) Potential of gallium as an antifungal agent. Front Cell Infect Microbiol 9:414. https://doi.org/10.3389/fcimb.2019.00414
doi: 10.3389/fcimb.2019.00414
pubmed: 31921699
pmcid: 6917619
Bauer I, Varadarajan D, Pidroni A, Gross S, Vergeiner S, Faber B, Hermann M, Tribus M, Brosch G, Graessle S (2016) A class 1 histone deacetylase with potential as an antifungal target. mBio 7:e00831-16. https://doi.org/10.1128/mBio.00831-16
doi: 10.1128/mBio.00831-16
pubmed: 27803184
pmcid: 5090035
Brandt P, Garbe E, Vylkova S (2020) Catch the wave: metabolomic analyses in human pathogenic fungi. PLOS Pathog 16:e1008757. https://doi.org/10.1371/journal.ppat.1008757
doi: 10.1371/journal.ppat.1008757
pubmed: 32817633
pmcid: 7440615
Chandra J, Mohammad S, Ghannoum MA (2009) Flucytosine: site of action, mechanism of resistance and use in combination therapy. In: Mayers DL (ed) Antimicrobial drug resistance: mechanisms of drug resistance. Humana Press, Totowa, NJ, pp 313–326
doi: 10.1007/978-1-59745-180-2_27
Chatre L, Ricchetti M (2014) Are mitochondria the Achilles’ heel of the kingdom fungi? Curr Opin Microbiol 20:49–54. https://doi.org/10.1016/j.mib.2014.05.001
doi: 10.1016/j.mib.2014.05.001
pubmed: 24906191
Cheah H-L, Lim V, Sandai D (2014) Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PloS One 9:e95951. https://doi.org/10.1371/journal.pone.0095951
doi: 10.1371/journal.pone.0095951
pubmed: 24781056
pmcid: 4004578
Chen X, Zhang Z, Chen Z, Li Y, Su S, Sun S (2020) Potential antifungal targets based on glucose metabolism pathways of Candida albicans. Front Microbiol 11:296. https://doi.org/10.3389/fmicb.2020.00296
doi: 10.3389/fmicb.2020.00296
pubmed: 32256459
pmcid: 7093590
Cook K, Sraubol T, Campbell KB, Mourad A, Stiber J, Perfect JR, Johnson M (2017) QTc Prolongation in patients receiving triazoles and amiodarone. Open Forum Infect Dis 4:S84. https://doi.org/10.1093/ofid/ofx163.031
doi: 10.1093/ofid/ofx163.031
pmcid: 5631856
De Coninck B, Verheesen P, Vos CM, Van Daele I, De Bolle MF, Vieira JV, Peferoen M, Cammue BPA, Thevissen K (2017) Fungal glucosylceramide-specific camelid single domain antibodies are characterized by broad spectrum antifungal activity. Front Microbiol 8:1059. https://doi.org/10.3389/fmicb.2017.01059
doi: 10.3389/fmicb.2017.01059
pubmed: 28659884
pmcid: 5469901
Delgado A, Casas J, Llebaria A, Abad JL, Fabrias G (2006) Inhibitors of sphingolipid metabolism enzymes. Biochim Biophys Acta BBA - Biomembr 1758:1957–1977. https://doi.org/10.1016/j.bbamem.2006.08.017
doi: 10.1016/j.bbamem.2006.08.017
Deprez M-A, Eskes E, Winderickx J, Wilms T (2018) The TORC1-Sch9 pathway as a crucial mediator of chronological lifespan in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 18. https://doi.org/10.1093/femsyr/foy048
Di Mambro T, Vanzolini T, Bianchi M, Crinelli R, Canonico B, Tasini F, Menotta M, Magnani M (2022) Development and in vitro characterization of a humanized scFv against fungal infections. PloS One 17:e0276786. https://doi.org/10.1371/journal.pone.0276786
doi: 10.1371/journal.pone.0276786
pubmed: 36315567
pmcid: 9621433
Di Mambro T, Vanzolini T, Bruscolini P, Perez-Gaviro S, Marra E, Roscilli G, Bianchi M, Fraternale A, Schiavano GF, Canonico B, Magnani M (2021) A new humanized antibody is effective against pathogenic fungi in vitro. Sci Rep 11:19500. https://doi.org/10.1038/s41598-021-98659-5
doi: 10.1038/s41598-021-98659-5
pubmed: 34593880
pmcid: 8484667
e Silva KS, Silva L, Gonçales R, Neves B, Soares C, Pereira M (2020) Setting new routes for antifungal drug discovery against pathogenic fungi. Curr Pharm Des 26. https://doi.org/10.2174/1381612826666200317125956
Fernandes CM, Goldman GH, Del Poeta M (2018) Biological roles played by sphingolipids in dimorphic and filamentous fungi. mBio 9:e00642-18. https://doi.org/10.1128/mBio.00642-18
doi: 10.1128/mBio.00642-18
pubmed: 29764947
pmcid: 5954224
Fortwendel JR, Panepinto JC, Seitz AE, Askew DS, Rhodes JC (2004) Aspergillus fumigatus rasA and rasB regulate the timing and morphology of asexual development. Fungal Genet Biol 41:129–139. https://doi.org/10.1016/j.fgb.2003.10.004
doi: 10.1016/j.fgb.2003.10.004
pubmed: 14732259
Gorska M (2012) Geldanamycin and its derivatives as Hsp90 inhibitors. Front Biosci 17:2269. https://doi.org/10.2741/4050
doi: 10.2741/4050
Hai TP, Van AD, Ngan NTT, Nhat LTH, Lan NPH, Vinh Chau NV, Thwaites GE, Krysan D, Day JN (2019) The combination of tamoxifen with amphotericin B, but not with fluconazole, has synergistic activity against the majority of clinical isolates of Cryptococcus neoformans. Mycoses 62:818–825. https://doi.org/10.1111/myc.12955
doi: 10.1111/myc.12955
pubmed: 31173410
pmcid: 6771715
Hast MA, Nichols CB, Armstrong SM, Kelly SM, Hellinga HW, Alspaugh JA, Beese LS (2011) Structures of Cryptococcus neoformans protein farnesyltransferase reveal strategies for developing inhibitors that target fungal pathogens. J Biol Chem 286:35149–35162. https://doi.org/10.1074/jbc.M111.250506
doi: 10.1074/jbc.M111.250506
pubmed: 21816822
pmcid: 3186413
Hogan DA, Sundstrom P (2009) The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiol 4:1263–1270. https://doi.org/10.2217/fmb.09.106
doi: 10.2217/fmb.09.106
pubmed: 19995187
Houšť J, Spížek J, Havlíček V (2020) Antifungal drugs. Metabolites 10:106. https://doi.org/10.3390/metabo10030106
doi: 10.3390/metabo10030106
pubmed: 32178468
pmcid: 7143493
Jati S, Mahata S, Das S, Chatterjee S, Mahata SK (2023) Catestatin: antimicrobial functions and potential therapeutics. Pharmaceutics 15:1550. https://doi.org/10.3390/pharmaceutics15051550
doi: 10.3390/pharmaceutics15051550
pubmed: 37242791
pmcid: 10220906
Jiang H, Xiong J, Tan L, Jin P, Sun Y, Yang L, Tan J (2022) In vitro interactions of antifungal agents and everolimus against Aspergillus species. Front Cell Infect Microbiol 12:936814. https://doi.org/10.3389/fcimb.2022.936814
doi: 10.3389/fcimb.2022.936814
pubmed: 35865820
pmcid: 9294350
Juvvadi PR, Fox D, Bobay BG, Hoy MJ, Gobeil SMC, Venters RA, Chang Z, Lin JJ, Averette AF, Cole DC, Barrington BC, Wheaton JD, Ciofani M, Trzoss M, Li X, Lee SC, Chen Y-L, Mutz M, Spicer LD et al (2019) Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nat Commun 10:4275. https://doi.org/10.1038/s41467-019-12199-1
doi: 10.1038/s41467-019-12199-1
pubmed: 31537789
pmcid: 6753081
Karwa R, Wargo KA (2009) Efungumab: a novel agent in the treatment of invasive candidiasis. Ann Pharmacother 43:1818–1823. https://doi.org/10.1345/aph.1M218
doi: 10.1345/aph.1M218
pubmed: 19773528
Kato H, Hagihara M, Shibata Y, Asai N, Yamagishi Y, Iwamoto T, Mikamo H (2021) Comparison of mortality between echinocandins and polyenes for an initial treatment of candidemia: a systematic review and meta-analysis. J Infect Chemother Off J Jpn Soc Chemother 27:1562–1570. https://doi.org/10.1016/j.jiac.2021.06.017
doi: 10.1016/j.jiac.2021.06.017
Kozel TR, Wickes B (2014) Fungal diagnostics. Cold Spring Harb Perspect Med 4:a019299. https://doi.org/10.1101/cshperspect.a019299
doi: 10.1101/cshperspect.a019299
pubmed: 24692193
pmcid: 3968782
LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AAL, Perfect JR, Cowen LE (2010) PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, Calcineurin, and Hsp90. PLOS Pathog 6:e1001069. https://doi.org/10.1371/journal.ppat.1001069
doi: 10.1371/journal.ppat.1001069
pubmed: 20865172
pmcid: 2928802
Lamoth F, Juvvadi PR, Fortwendel JR, Steinbach WJ (2012) Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot Cell 11:1324–1332. https://doi.org/10.1128/EC.00032-12
doi: 10.1128/EC.00032-12
pubmed: 22822234
pmcid: 3486032
Lamoth F, Juvvadi PR, Gehrke C, Steinbach WJ (2013) In vitro activity of calcineurin and heat shock protein 90 inhibitors against Aspergillus fumigatus azole- and echinocandin-resistant strains. Antimicrob Agents Chemother 57:1035–1039. https://doi.org/10.1128/AAC.01857-12
doi: 10.1128/AAC.01857-12
pubmed: 23165466
pmcid: 3553695
Laniado-Laborín R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26:223–227. https://doi.org/10.1016/j.riam.2009.06.003
doi: 10.1016/j.riam.2009.06.003
pubmed: 19836985
Larwood DJ (2020) Nikkomycin Z-ready to meet the promise? J Fungi Basel Switz 6:261. https://doi.org/10.3390/jof6040261
doi: 10.3390/jof6040261
Liu L, Zhang X, Kayastha S, Tan L, Zhang H, Tan J, Li L, Mao J, Sun Y (2022) A preliminary in vitro and in vivo evaluation of the effect and action mechanism of 17-AAG combined with azoles against azole-resistant Candida spp. Front Microbiol 13:825745. https://doi.org/10.3389/fmicb.2022.825745
doi: 10.3389/fmicb.2022.825745
pubmed: 35875545
pmcid: 9300965
Loh BS, Ang WH (2020) “Illuminating” echinocandins mechanism of action. ACS Cent Sci 6:1651–1653. https://doi.org/10.1021/acscentsci.0c01222
doi: 10.1021/acscentsci.0c01222
pubmed: 33145405
pmcid: 7596855
Manavathu EK, Cutright JL, Chandrasekar PH (1998) Organism-dependent fungicidal activities of azoles. Antimicrob Agents Chemother 42:3018–3021
doi: 10.1128/AAC.42.11.3018
pubmed: 9797246
pmcid: 105986
Marena GD, Ramos MADS, Bauab TM, Chorilli M (2022) A critical review of analytical methods for quantification of amphotericin B in biological samples and pharmaceutical formulations. Crit Rev Anal Chem 52:555–576. https://doi.org/10.1080/10408347.2020.1811947
doi: 10.1080/10408347.2020.1811947
pubmed: 32880190
Mast N, Zheng W, Stout CD, Pikuleva IA (2013) Antifungal azoles: structural insights into undesired tight binding to cholesterol-metabolizing CYP46A1. Mol Pharmacol 84:86–94. https://doi.org/10.1124/mol.113.085902
doi: 10.1124/mol.113.085902
pubmed: 23604141
pmcid: 3684827
Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D, Ludlam MJC, Bowman KK, Wu J, Giannetti AM, Starovasnik MA, Mellman I, Jackson PK, Rudolph J, Wang W, Fang G (2012) Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA 109:5299–5304. https://doi.org/10.1073/pnas.1116510109
doi: 10.1073/pnas.1116510109
pubmed: 22431598
pmcid: 3325706
McGeady P, Logan DA, Wansley DL (2002) A protein-farnesyl transferase inhibitor interferes with the serum-induced conversion of Candida albicans from a cellular yeast form to a filamentous form. FEMS Microbiol Lett 213:41–44. https://doi.org/10.1111/j.1574-6968.2002.tb11283.x
doi: 10.1111/j.1574-6968.2002.tb11283.x
pubmed: 12127486
Millson SH, Piper PW (2014) Insights from yeast into whether the rapamycin inhibition of heat shock transcription factor (Hsf1) can prevent the Hsf1 activation that results from treatment with an Hsp90 inhibitor. Oncotarget 5:5054–5064
doi: 10.18632/oncotarget.2077
pubmed: 24970820
pmcid: 4148121
Mota Fernandes C, Dasilva D, Haranahalli K, McCarthy JB, Mallamo J, Ojima I, Del Poeta M (2021) The future of antifungal drug therapy: novel compounds and targets. Antimicrob Agents Chemother 65:e01719–e01720. https://doi.org/10.1128/AAC.01719-20
doi: 10.1128/AAC.01719-20
pubmed: 33229427
pmcid: 7848987
Mrak P, Krastel P, Pivk Lukančič P, Tao J, Pistorius D, Moore CM (2018) Discovery of the actinoplanic acid pathway in Streptomyces rapamycinicus reveals a genetically conserved synergism with rapamycin. J Biol Chem 293:19982–19995. https://doi.org/10.1074/jbc.RA118.005314
doi: 10.1074/jbc.RA118.005314
pubmed: 30327433
pmcid: 6311506
Nakamura I, Ohsumi K, Takeda S, Katsumata K, Matsumoto S, Akamatsu S, Mitori H, Nakai T (2019) ASP2397 Is a novel natural compound that exhibits rapid and potent fungicidal activity against Aspergillus species through a specific transporter. Antimicrob Agents Chemother 63:e02689–e02618. https://doi.org/10.1128/AAC.02689-18
doi: 10.1128/AAC.02689-18
pubmed: 31405853
pmcid: 6761492
Nett JE, Andes DR (2016) Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin North Am 30:51–83. https://doi.org/10.1016/j.idc.2015.10.012
doi: 10.1016/j.idc.2015.10.012
pubmed: 26739608
Nguyen HTT, Choi S, Kim S, Lee J-H, Park AR, Yu NH, Yoon H, Bae C-H, Yeo JH, Choi GJ, Son H, Kim J-C (2020) The Hsp90 inhibitor, monorden, is a promising lead compound for the development of novel fungicides. Front Plant Sci 11:371. https://doi.org/10.3389/fpls.2020.00371
doi: 10.3389/fpls.2020.00371
pubmed: 32300352
pmcid: 7144829
Oliveira LVN, Wang R, Specht CA, Levitz SM (2021) Vaccines for human fungal diseases: close but still a long way to go. Npj Vaccines 6:1–8. https://doi.org/10.1038/s41541-021-00294-8
doi: 10.1038/s41541-021-00294-8
Oltu I, Cepoi L, Rudic V, Rudi L, Chiriac T, Valuta A, Codreanu S (2020a) Current research and new perspectives in antifungal drug development. Adv Exp Med Biol 1282:71–83. https://doi.org/10.1007/5584_2019_453
doi: 10.1007/5584_2019_453
pubmed: 31802443
Oltu I, Cepoi L, Rudic V, Rudi L, Chiriac T, Valuta A, Codreanu S (2020b) Current research and new perspectives in antifungal drug development. In: Donelli G (ed) Advances in microbiology, infectious diseases and public health: Volume 14. Springer International Publishing, Cham, pp 71–83
Phillips NA, Rocktashel M, Merjanian L (2023) Ibrexafungerp for the treatment of vulvovaginal candidiasis: design, development and place in therapy. Drug Des Devel Ther 17:363–367. https://doi.org/10.2147/DDDT.S339349
doi: 10.2147/DDDT.S339349
pubmed: 36785761
pmcid: 9921437
Prado RSD, Alves RJ, Oliveira CMAD, Kato L, Silva RAD, Quintino GO, do Desterro Cunha S, de Almeida Soares CM, Pereira M (2014) Inhibition of Paracoccidioides lutzii Pb01 isocitrate lyase by the natural compound argentilactone and its semi-synthetic derivatives. PLOS ONE 9:e94832. https://doi.org/10.1371/journal.pone.0094832
doi: 10.1371/journal.pone.0094832
pubmed: 24752170
pmcid: 3994062
Pursley TJ, Blomquist IK, Abraham J, Andersen HF, Bartley JA (1996) Fluconazole-induced congenital anomalies in three infants. Clin Infect Dis Off Publ Infect Dis Soc Am 22:336–340. https://doi.org/10.1093/clinids/22.2.336
doi: 10.1093/clinids/22.2.336
Qiao J, Gao P, Jiang X, Fang H (2013) In vitro antifungal activity of farnesyltransferase inhibitors against clinical isolates of Aspergillus and Candida. Ann Clin Microbiol Antimicrob 12:37. https://doi.org/10.1186/1476-0711-12-37
doi: 10.1186/1476-0711-12-37
pubmed: 24314136
pmcid: 4029545
Rauseo AM, Coler-Reilly A, Larson L, Spec A (2020) Hope on the horizon: novel fungal treatments in development. Open Forum. Infect Dis 7:ofaa016. https://doi.org/10.1093/ofid/ofaa016
doi: 10.1093/ofid/ofaa016
Rhome R, Singh A, Kechichian T, Drago M, Morace G, Luberto C, Poeta MD (2011) Surface localization of glucosylceramide during Cryptococcus neoformans infection allows targeting as a potential antifungal. PLOS ONE 6:e15572. https://doi.org/10.1371/journal.pone.0015572
doi: 10.1371/journal.pone.0015572
pubmed: 21283686
pmcid: 3024982
Richard M, Ibata-Ombetta S, Dromer F, Bordon-Pallier F, Jouault T, Gaillardin C (2002) Complete glycosylphosphatidylinositol anchors are required in Candida albicans for full morphogenesis, virulence and resistance to macrophages. Mol Microbiol 44:841–853. https://doi.org/10.1046/j.1365-2958.2002.02926.x
doi: 10.1046/j.1365-2958.2002.02926.x
pubmed: 11994163
Rittershaus PC, Kechichian TB, Allegood JC, Merrill AH, Hennig M, Luberto C, Poeta MD (2006) Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest 116:1651–1659. https://doi.org/10.1172/JCI27890
doi: 10.1172/JCI27890
pubmed: 16741577
pmcid: 1466548
Rodrigues ML, Nosanchuk JD (2020) Fungal diseases as neglected pathogens: a wake-up call to public health officials. PLoS Negl Trop Dis 14:e0007964. https://doi.org/10.1371/journal.pntd.0007964
doi: 10.1371/journal.pntd.0007964
pubmed: 32078635
pmcid: 7032689
Samalova M, Carr P, Bromley M, Blatzer M, Moya-Nilges M, Latgé J-P, Mouyna I (2020) GPI Anchored proteins in Aspergillus fumigatus and cell wall morphogenesis. Curr Top Microbiol Immunol 425:167–186. https://doi.org/10.1007/82_2020_207
doi: 10.1007/82_2020_207
pubmed: 32418035
Sass G, Ansari SR, Dietl A-M, Déziel E, Haas H, Stevens DA (2019) Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa. PLOS ONE 14:e0216085. https://doi.org/10.1371/journal.pone.0216085
doi: 10.1371/journal.pone.0216085
pubmed: 31067259
pmcid: 6505954
Şen Kaya S, Kiraz N, Bariş A, Turan D, Öz Y, Dağ İ, Aygün G (2021) Effects of calcineurin inhibitors, cyclosporine A and tacrolimus (FK506), on the activity of antifungal drugs against Candida spp. J Med Microbiol 70. https://doi.org/10.1099/jmm.0.001354
Shahi G, Kumar M, Kumari S, Rudramurthy SM, Chakrabarti A, Gaur NA, Singh A, Prasad R (2020) A detailed lipidomic study of human pathogenic fungi Candida auris. FEMS Yeast Res 20:foaa045. https://doi.org/10.1093/femsyr/foaa045
doi: 10.1093/femsyr/foaa045
pubmed: 32756963
pmcid: 8189018
Shapiro RS, Sellam A, Tebbji F, Whiteway M, Nantel A, Cowen LE (2012) Pho85, Pcl1, and Hms1 Signaling governs Candida albicans morphogenesis induced by high temperature or Hsp90 compromise. Curr Biol 22:461–470. https://doi.org/10.1016/j.cub.2012.01.062
doi: 10.1016/j.cub.2012.01.062
pubmed: 22365851
Shibata T, Takahashi T, Yamada E, Kimura A, Nishikawa H, Hayakawa H, Nomura N, Mitsuyama J (2012) T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob Agents Chemother 56:5892–5897. https://doi.org/10.1128/AAC.05954-11
doi: 10.1128/AAC.05954-11
pubmed: 22948882
pmcid: 3486560
Singh A, Singh P, Meis JF, Chowdhary A (2021) In vitro activity of the novel antifungal olorofim against dermatophytes and opportunistic moulds including Penicillium and Talaromyces species. J Antimicrob Chemother 76:1229–1233. https://doi.org/10.1093/jac/dkaa562
doi: 10.1093/jac/dkaa562
pubmed: 33421073
pmcid: 8050765
Singh SB, Liu W, Li X, Chen T, Shafiee A, Card D, Abruzzo G, Flattery A, Gill C, Thompson JR, Rosenbach M, Dreikorn S, Hornak V, Meinz M, Kurtz M, Kelly R, Onishi JC (2012) Antifungal spectrum, in vivo efficacy, and structure–activity relationship of ilicicolin H. ACS Med Chem Lett 3:814–817. https://doi.org/10.1021/ml300173e
doi: 10.1021/ml300173e
pubmed: 24900384
pmcid: 4025731
Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE (2009) Hsp90 Governs echinocandin resistance in the pathogenic yeast Candida albicans via Calcineurin. PLOS Pathog 5:e1000532. https://doi.org/10.1371/journal.ppat.1000532
doi: 10.1371/journal.ppat.1000532
pubmed: 19649312
pmcid: 2712069
Snelders E, Moyrand F, Sturny-Leclère A, Vernel-Pauillac F, Volant S, Janbon G, Alanio A (2022) The role of glycosylphosphatidylinositol (gpi) anchored proteins in Cryptococcus neoformans. Microbes Infect 24:105016. https://doi.org/10.1016/j.micinf.2022.105016
doi: 10.1016/j.micinf.2022.105016
pubmed: 35640861
Subissi A, Monti D, Togni G, Mailland F (2010) Ciclopirox: recent nonclinical and clinical data relevant to its use as a topical antimycotic agent. Drugs 70:2133–2152. https://doi.org/10.2165/11538110-000000000-00000
doi: 10.2165/11538110-000000000-00000
pubmed: 20964457
Sucher AJ, Thai A, Tran C, Mantena N, Noronha A, Chahine EB (2022) Ibrexafungerp: a new triterpenoid antifungal. Am J Health-Syst Pharm 79:2208–2221. https://doi.org/10.1093/ajhp/zxac256
doi: 10.1093/ajhp/zxac256
pubmed: 36083109
Sussman A, Huss K, Chio L-C, Heidler S, Shaw M, Ma D, Zhu G, Campbell RM, Park T-S, Kulanthaivel P, Scott JE, Carpenter JW, Strege MA, Belvo MD, Swartling JR, Fischl A, Yeh W-K, Shih C, Ye XS (2004) Discovery of cercosporamide, a known antifungal natural product, as a selective Pkc1 kinase inhibitor through high-throughput screening. Eukaryot cell 3:932–943. https://doi.org/10.1128/EC.3.4.932-943.2004
doi: 10.1128/EC.3.4.932-943.2004
pubmed: 15302826
pmcid: 500880
Syed YY (2023) Rezafungin: first approval. Drugs 83:833–840. https://doi.org/10.1007/s40265-023-01891-8
doi: 10.1007/s40265-023-01891-8
pubmed: 37212966
Takai H, Xie Y, de Lange T, Pavletich NP (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24:2019–2030. https://doi.org/10.1101/gad.1956410
doi: 10.1101/gad.1956410
pubmed: 20801936
pmcid: 2939364
Thammahong A, Puttikamonkul S, Perfect JR, Brennan RG, Cramer RA (2017) Central role of the trehalose biosynthesis pathway in the pathogenesis of human fungal infections: opportunities and challenges for therapeutic development. Microbiol Mol Biol Rev MMBR 81:e00053–e00016. https://doi.org/10.1128/MMBR.00053-16
doi: 10.1128/MMBR.00053-16
pubmed: 28298477
Tonziello G, Caraffa E, Pinchera B, Granata G, Petrosillo N (2019) Present and future of siderophore-based therapeutic and diagnostic approaches in infectious diseases. Infect Dis Rep 11. https://doi.org/10.4081/idr.2019.8208
Uppuluri P, Nett J, Heitman J, Andes D (2008) Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 52:1127–1132. https://doi.org/10.1128/AAC.01397-07
doi: 10.1128/AAC.01397-07
pubmed: 18180354
pmcid: 2258509
Vanzolini T, Mambro TD, Magnani M, Menotta M (2023) AFM evaluation of a humanized recombinant antibody affecting C. auris cell wall and stability. RSC Adv 13:6130–6142. https://doi.org/10.1039/D2RA07217C
doi: 10.1039/D2RA07217C
pubmed: 36814881
pmcid: 9940460
Wang Y, Xu F, Nichols CB, Shi Y, Hellinga HW, Alspaugh JA, Distefano MD, Beese LS (2022) Structure-guided discovery of potent antifungals that prevent Ras signaling by inhibiting protein farnesyltransferase. J Med Chem 65:13753–13770. https://doi.org/10.1021/acs.jmedchem.2c00902
doi: 10.1021/acs.jmedchem.2c00902
pubmed: 36218371
pmcid: 10755971
Ward H, Parkes N, Smith C, Kluzek S, Pearson R (2022) Consensus for the treatment of tinea pedis: a systematic review of randomised controlled trials. J Fungi 8:351. https://doi.org/10.3390/jof8040351
doi: 10.3390/jof8040351
Whitesell L, Robbins N, Huang DS, McLellan CA, Shekhar-Guturja T, LeBlanc EV, Nation CS, Hui R, Hutchinson A, Collins C, Chatterjee S, Trilles R, Xie JL, Krysan DJ, Lindquist S, Porco JA, Tatu U, Brown LE, Pizarro J, Cowen LE (2019) Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nat Commun 10:402. https://doi.org/10.1038/s41467-018-08248-w
doi: 10.1038/s41467-018-08248-w
pubmed: 30679438
pmcid: 6345968
Wickes BL, Wiederhold NP (2018) Molecular diagnostics in medical mycology. Nat Commun 9:5135. https://doi.org/10.1038/s41467-018-07556-5
doi: 10.1038/s41467-018-07556-5
pubmed: 30510235
pmcid: 6277409
Wu Y, Zhang M, Yang Y, Ding X, Yang P, Huang K, Hu X, Zhang M, Liu X, Yu H (2022) Structures and mechanism of chitin synthase and its inhibition by antifungal drug Nikkomycin Z. Cell Discov 8:129. https://doi.org/10.1038/s41421-022-00495-y
doi: 10.1038/s41421-022-00495-y
pubmed: 36473834
pmcid: 9726829
Wurtele H, Tsao S, Lépine G, Mullick A, Tremblay J, Drogaris P, Lee E-H, Thibault P, Verreault A, Raymond M (2010) Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 16:774–780. https://doi.org/10.1038/nm.2175
doi: 10.1038/nm.2175
pubmed: 20601951
pmcid: 4108442
Xie Y, Hua H, Zhou P (2022) Magnolol as a potent antifungal agent inhibits Candida albicans virulence factors via the PKC and Cek1 MAPK signaling pathways. Front Cell Infect Microbiol 12:935322. https://doi.org/10.3389/fcimb.2022.935322
doi: 10.3389/fcimb.2022.935322
pubmed: 35937692
pmcid: 9355038
Yadav U, Khan MA (2018) Targeting the GPI biosynthetic pathway. Pathog Glob Health 112:115–122. https://doi.org/10.1080/20477724.2018.1442764
doi: 10.1080/20477724.2018.1442764
pubmed: 29484956
pmcid: 6056829
Yang X, Pei Z, Hu R, Zhang Z, Lou Z, Sun X (2021) Study on the inhibitory activity and possible mechanism of myriocin on clinically relevant drug-resistant Candida albicans and its biofilms. Biol Pharm Bull 44:305–315. https://doi.org/10.1248/bpb.b20-00246
doi: 10.1248/bpb.b20-00246
pubmed: 33441497
Yang X, Shu Y, Cao S, Sun H, Zhang X, Zhang A, Li Y, Ma D, Chen H, Li W (2023) Trehalase inhibitor validamycin may have additional mechanisms of toxicology against Rhizoctonia cerealis. J Fungi 9:846. https://doi.org/10.3390/jof9080846
doi: 10.3390/jof9080846
Yuan R, Tu J, Sheng C, Chen X, Liu N (2021) Effects of Hsp90 inhibitor ganetespib on inhibition of azole-resistant Candida albicans. Front Microbiol 12:680382. https://doi.org/10.3389/fmicb.2021.680382
doi: 10.3389/fmicb.2021.680382
pubmed: 34093502
pmcid: 8174564
Zhang Q, Liu F, Zeng M, Mao Y, Song Z (2021a) Drug repurposing strategies in the development of potential antifungal agents. Appl Microbiol Biotechnol 1–21. https://doi.org/10.1007/s00253-021-11407-7
Zhang SX, Babady NE, Hanson KE, Harrington AT, PMK L, Leal SM, Luethy PM, Martin IW, Pancholi P, Procop GW, Riedel S, Seyedmousavi S, Sullivan KV, Walsh TJ, Lockhart SR, Fungal Diagnostics Laboratories Consortium (FDLC) (2021b) Recognition of diagnostic gaps for laboratory diagnosis of fungal diseases: expert opinion from the Fungal Diagnostics Laboratories Consortium (FDLC). J Clin Microbiol 59:e0178420. https://doi.org/10.1128/JCM.01784-20
doi: 10.1128/JCM.01784-20
pubmed: 33504591
Zheng Y-H, Ma Y-Y, Ding Y, Chen X-Q, Gao G-X (2018) An insight into new strategies to combat antifungal drug resistance. Drug Des Devel Ther 12:3807–3816. https://doi.org/10.2147/DDDT.S185833
doi: 10.2147/DDDT.S185833
pubmed: 30464412
pmcid: 6225914