Effects of lockdowns on neurobiological and psychometric parameters in unipolar depression during the COVID-19 pandemic.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
19 Jan 2024
Historique:
received: 02 06 2023
accepted: 02 01 2024
revised: 19 12 2023
medline: 20 1 2024
pubmed: 20 1 2024
entrez: 19 1 2024
Statut: epublish

Résumé

Defying the COVID-19 pandemic required restriction measures of unprecedented scale, that may induce and exacerbate psychiatric symptoms across the population. We aimed to assess in vivo dynamic effects of mitigation strategies on human brain neurobiology, neuroplastic as well as psychometric parameters. Three structural magnetic resonance imaging measurements, serum brain-derived neurotrophic factor (sBDNF) analyses, and psychometric assessments (Beck Depression Inventory-II and Perceived Stress Questionnaire-20) were performed in healthy individuals and patients with a recurrent major depressive disorder in the period from September 2020 to July 2021. Group differences and changes over time in structural imaging, neuroplastic and psychometric parameters were assessed with linear mixed models. Analysis of data from 18 patients with a recurrent major depressive disorder and 28 healthy individuals showed clinically relevant scores for depression and stress in the patient group as well as significant cross-sectional differences in depression scores (F = 30.89, p < 0.001) and three subscales of the Perceived Stress Questionnaire (Worries: F = 19.19, p < 0.001, Tension: F = 34.44, p < 0.001, Joy: F = 12.05, p = 0.001). Linear mixed models revealed no significant changes over time in cortical thickness of the prefrontal cortex, anterior cingulate cortex, hippocampus, and amygdala (F = 0.29, p > 0.1) and no interaction with group (F = 0.28, p > 0.1). Further, analysis revealed no main effect of time and no interaction of time x group in depressive symptoms, perceived stress subscales, and sBDNF (all p > 0.1). Despite the limited sample size, the strength of this investigation lies in the multimodal assessment of peri-pandemic lockdown effects. Nine months of varying restrictions measures did not result in observable changes in brain morphology nor impact depressive symptoms in either psychiatric patients with a recurrent major depressive disorder or healthy individuals. While these neurobiological and psychometric data stand in contrast to initial expectations about the effects of restriction measures, they might inform future investigations of longitudinal effects of restriction measures on mental health.

Identifiants

pubmed: 38242882
doi: 10.1038/s41398-024-02733-1
pii: 10.1038/s41398-024-02733-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

42

Subventions

Organisme : Magistrat der Stadt Wien (Vienna City Administration)
ID : APCOV26BGM

Informations de copyright

© 2024. The Author(s).

Références

Yuan K, Zheng YB, Wang YJ, Sun YK, Gong YM, Huang YT et al. A systematic review and meta-analysis on prevalence of and risk factors associated with depression, anxiety and insomnia in infectious diseases, including COVID-19: a call to action. Mol Psychiatry (2022). https://doi.org/10.1038/s41380-022-01638-z
Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395:912–20. https://doi.org/10.1016/S0140-6736(20)30460-8
doi: 10.1016/S0140-6736(20)30460-8 pubmed: 32112714 pmcid: 7158942
Greenberg N, Rafferty L. Post-traumatic stress disorder in the aftermath of COVID-19 pandemic. World Psychiatry: Off J World Psychiatr Assoc. 2021;20:53–54. https://doi.org/10.1002/wps.20838
doi: 10.1002/wps.20838
Probst T, Budimir S, Pieh C. Depression in and after COVID-19 lockdown in Austria and the role of stress and loneliness in lockdown: a longitudinal study. J Affect Disord. 2020;277:962–3. https://doi.org/10.1016/j.jad.2020.09.047
doi: 10.1016/j.jad.2020.09.047 pubmed: 33065839 pmcid: 7487145
Arnau-Soler A, Adams MJ, Clarke TK, MacIntyre DJ, Milburn K, Navrady L, et al. A validation of the diathesis-stress model for depression in generation Scotland. Transl psychiatry. 2019;9:25 https://doi.org/10.1038/s41398-018-0356-7
doi: 10.1038/s41398-018-0356-7 pubmed: 30659167 pmcid: 6338746
Elbau IG, Cruceanu C, Binder EB. Genetics of resilience: gene-by-environment interaction studies as a tool to dissect mechanisms of resilience. Biol Psychiatry. 2019;86:433–42. https://doi.org/10.1016/j.biopsych.2019.04.025
doi: 10.1016/j.biopsych.2019.04.025 pubmed: 31202489
Rek, SV, Freeman, D, Reinhard, MA, Buhner, M, Grosen, S, Falkai, P et al. Differential psychological response to the COVID-19 pandemic in psychiatric inpatients compared to a non-clinical population from Germany. Eur Arch Psychiatry Clin Neurosci. (2021). https://doi.org/10.1007/s00406-021-01291-7
Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci. 2016;17:497–511. https://doi.org/10.1038/nrn.2016.69
doi: 10.1038/nrn.2016.69 pubmed: 27277867
Sekiguchi A, Kotozaki Y, Sugiura M, Nouchi R, Takeuchi H, Hanawa S, et al. Resilience after 3/11: structural brain changes 1 year after the Japanese earthquake. Mol Psychiatry. 2015;20:553–4. https://doi.org/10.1038/mp.2014.28
doi: 10.1038/mp.2014.28 pubmed: 24776737
Sekiguchi A, Sugiura M, Taki Y, Kotozaki Y, Nouchi R, Takeuchi H, et al. Brain structural changes as vulnerability factors and acquired signs of post-earthquake stress. Mol Psychiatry. 2013;18:618–23. https://doi.org/10.1038/mp.2012.51
doi: 10.1038/mp.2012.51 pubmed: 22614289
Stahn AC, Gunga HC, Kohlberg E, Gallinat J, Dinges DF, Kuhn S. Brain changes in response to long antarctic expeditions. N Engl J Med. 2019;381:2273–5. https://doi.org/10.1056/NEJMc1904905
doi: 10.1056/NEJMc1904905 pubmed: 31800997
De Vincenti AP, Rios AS, Paratcha G, Ledda F. Mechanisms that modulate and diversify BDNF functions: implications for hippocampal synaptic plasticity. Front Cell Neurosci. 2019;13:135 https://doi.org/10.3389/fncel.2019.00135
doi: 10.3389/fncel.2019.00135 pubmed: 31024262 pmcid: 6465932
Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M, et al. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. NeuroImage. 2017;155:370–82. https://doi.org/10.1016/j.neuroimage.2017.04.046
doi: 10.1016/j.neuroimage.2017.04.046 pubmed: 28479476
Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31:968–80. https://doi.org/10.1016/j.neuroimage.2006.01.021
doi: 10.1016/j.neuroimage.2006.01.021 pubmed: 16530430
Im K, Lee JM, Lyttelton O, Kim SH, Evans AC, Kim SI. Brain size and cortical structure in the adult human brain. Cereb Cortex. 2008;18:2181–91. https://doi.org/10.1093/cercor/bhm244
doi: 10.1093/cercor/bhm244 pubmed: 18234686
Wierenga LM, Langen M, Oranje B, Durston S. Unique developmental trajectories of cortical thickness and surface area. NeuroImage. 2014;87:120–6. https://doi.org/10.1016/j.neuroimage.2013.11.010
doi: 10.1016/j.neuroimage.2013.11.010 pubmed: 24246495
Roeckner AR, Oliver KI, Lebois LAM, van Rooij SJH, Stevens JS. Neural contributors to trauma resilience: a review of longitudinal neuroimaging studies. Transl Psychiatry. 2021;11:508 https://doi.org/10.1038/s41398-021-01633-y
doi: 10.1038/s41398-021-01633-y pubmed: 34611129 pmcid: 8492865
Boyce WT. Differential susceptibility of the developing brain to contextual adversity and stress. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2016;41:142–62. https://doi.org/10.1038/npp.2015.294
doi: 10.1038/npp.2015.294
Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav. 2021;5:529–38. https://doi.org/10.1038/s41562-021-01079-8
doi: 10.1038/s41562-021-01079-8 pubmed: 33686204
Fliege H, Rose M, Arck P, Levenstein S, Klapp BF. Validierung des “perceived stress questionnaire”(PSQ) an einer deutschen Stichprobe. Validation of the “Perceived Stress Questionnaire”(PSQ) in a German sample. Diagnostica. 2001;47:142–52.
doi: 10.1026//0012-1924.47.3.142
Robinson E, Sutin AR, Daly M, Jones A. A systematic review and meta-analysis of longitudinal cohort studies comparing mental health before versus during the COVID-19 pandemic in 2020. J Affect Disord. 2022;296:567–76. https://doi.org/10.1016/j.jad.2021.09.098
doi: 10.1016/j.jad.2021.09.098 pubmed: 34600966
Daly M, Robinson E. Psychological distress and adaptation to the COVID-19 crisis in the United States. J Psychiatr Res. 2021;136:603–9. https://doi.org/10.1016/j.jpsychires.2020.10.035
doi: 10.1016/j.jpsychires.2020.10.035 pubmed: 33138985
Belz M, Hessmann P, Vogelgsang J, Schmidt U, Ruhleder M, Signerski-Krieger J, et al. Evolution of psychosocial burden and psychiatric symptoms in patients with psychiatric disorders during the Covid-19 pandemic. Eur Arch Psychiatry Clin Neurosci. 2022;272:29–40. https://doi.org/10.1007/s00406-021-01268-6
doi: 10.1007/s00406-021-01268-6 pubmed: 33942148
Cohrdes, C, Wetzel, B, Pryss, R, Baumeister, H & Gobel, K. Adult quality of life patterns and trajectories during the COVID-19 pandemic in Germany. Curr Psychol. 1-13 (2022). https://doi.org/10.1007/s12144-022-03628-4
Ahrens KF, Neumann RJ, Kollmann B, Plichta MM, Lieb K, Tuscher O, et al. Differential impact of COVID-related lockdown on mental health in Germany. World Psychiatry: Off J World Psychiatr Assoc. 2021;20:140–1. https://doi.org/10.1002/wps.20830
doi: 10.1002/wps.20830
van de Weijer MP, Pelt DHM, de Vries LP, Huider F, van der Zee MD, Helmer Q, et al. Genetic and environmental influences on quality of life: the COVID-19 pandemic as a natural experiment. Genes Brain Behav. 2022;21:e12796 https://doi.org/10.1111/gbb.12796
doi: 10.1111/gbb.12796 pubmed: 35289084 pmcid: 9111595
Alon-Tirosh, M, Hadar-Shoval, D, Asraf, K, Tannous-Haddad, L & Tzischinsky, O. The Association between lifestyle changes and psychological distress during COVID-19 lockdown: the moderating role of COVID-related stressors. Int J Environ Res Public Health 18 (2021). https://doi.org/10.3390/ijerph18189695
Methfessel I, Besse M, Belz M, Zilles-Wegner D. Effectiveness of maintenance electroconvulsive therapy-Evidence from modifications due to the COVID-19 pandemic. Acta Psychiatr Scand. 2021;144:238–45. https://doi.org/10.1111/acps.13314
doi: 10.1111/acps.13314 pubmed: 33960406 pmcid: 8212113
Simon J, Helter TM, White RG, van der Boor C, Laszewska A. Impacts of the Covid-19 lockdown and relevant vulnerabilities on capability well-being, mental health and social support: an Austrian survey study. BMC Public Health. 2021;21:314 https://doi.org/10.1186/s12889-021-10351-5
doi: 10.1186/s12889-021-10351-5 pubmed: 33557816 pmcid: 7868863
Winkler D, Reichardt B, Rothenberg M, Rujescu D, Pjrek E. Prescriptions of psychopharmacologic drugs in Austria in 2019 and 2020 – Implications of the COVID-19 pandemic. Eur Psychiatry. 2022;65:e73 https://doi.org/10.1192/j.eurpsy.2022.2328
doi: 10.1192/j.eurpsy.2022.2328 pubmed: 36281638 pmcid: 9677449
Sheridan Rains L, Johnson S, Barnett P, Steare T, Needle JJ, Carr S, et al. Early impacts of the COVID-19 pandemic on mental health care and on people with mental health conditions: framework synthesis of international experiences and responses. Soc Psychiatry Psychiatr Epidemiol. 2021;56:13–24. https://doi.org/10.1007/s00127-020-01924-7
doi: 10.1007/s00127-020-01924-7 pubmed: 32804258
Benfato ID, Quintanilha ACS, Henrique JS, Souza MA, Rosario BDA, Beserra Filho JIA, et al. Effects of long-term social isolation on central, behavioural and metabolic parameters in middle-aged mice. Behav Brain Res. 2022;417:113630 https://doi.org/10.1016/j.bbr.2021.113630
doi: 10.1016/j.bbr.2021.113630 pubmed: 34656691
Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol psychiatry. 2014;19:791–800. https://doi.org/10.1038/mp.2013.105
doi: 10.1038/mp.2013.105 pubmed: 23958957
Schmaal L, Hibar DP, Sämann PG, Hall GB, Baune BT, Jahanshad N, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 2017;22:900–9. https://doi.org/10.1038/mp.2016.60
doi: 10.1038/mp.2016.60 pubmed: 27137745
Schmaal L, Veltman DJ, van Erp TGM, Sämann PG, Frodl T, Jahanshad N, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry. 2016;21:806–12. https://doi.org/10.1038/mp.2015.69
doi: 10.1038/mp.2015.69 pubmed: 26122586
Binnewies J, Nawijn L, van Tol MJ, van der Wee NJA, Veltman DJ, Penninx B. Associations between depression, lifestyle and brain structure: a longitudinal MRI study. NeuroImage. 2021;231:117834 https://doi.org/10.1016/j.neuroimage.2021.117834
doi: 10.1016/j.neuroimage.2021.117834 pubmed: 33549761
Salomon T, Cohen A, Barazany D, Ben-Zvi G, Botvinik-Nezer R, Gera R, et al. Brain volumetric changes in the general population following the COVID-19 outbreak and lockdown. NeuroImage. 2021;239:118311 https://doi.org/10.1016/j.neuroimage.2021.118311
doi: 10.1016/j.neuroimage.2021.118311 pubmed: 34182098
Weis CN, Webb EK, Huggins AA, Kallenbach M, Miskovich TA, Fitzgerald JM, et al. Stability of hippocampal subfield volumes after trauma and relationship to development of PTSD symptoms. NeuroImage. 2021;236:118076 https://doi.org/10.1016/j.neuroimage.2021.118076
doi: 10.1016/j.neuroimage.2021.118076 pubmed: 33878374
van Wingen GA, Geuze E, Vermetten E, Fernandez G. Perceived threat predicts the neural sequelae of combat stress. Mol Psychiatry. 2011;16:664–71. https://doi.org/10.1038/mp.2010.132
doi: 10.1038/mp.2010.132 pubmed: 21242990 pmcid: 3100568
Gryglewski G, Baldinger-Melich P, Seiger R, Godbersen GM, Michenthaler P, Klöbl M, et al. Structural changes in amygdala nuclei, hippocampal subfields and cortical thickness following electroconvulsive therapy in treatment-resistant depression: longitudinal analysis. Br J Psychiatry. 2018;214:159–67. https://doi.org/10.1192/bjp.2018.224
doi: 10.1192/bjp.2018.224 pubmed: 30442205
Budimir, S, Pieh, C, Dale, R & Probst, T Severe Mental Health Symptoms during COVID-19: a comparison of the United Kingdom and Austria. Healthcare 9 (2021). https://doi.org/10.3390/healthcare9020191
Cenat JM, Farahi S, Dalexis RD, Darius WP, Bekarkhanechi FM, Poisson H, et al. The global evolution of mental health problems during the COVID-19 pandemic: A systematic review and meta-analysis of longitudinal studies. J Affect Disord. 2022;315:70–95. https://doi.org/10.1016/j.jad.2022.07.011
doi: 10.1016/j.jad.2022.07.011 pubmed: 35842064 pmcid: 9278995
Prati G, Mancini AD. The psychological impact of COVID-19 pandemic lockdowns: a review and meta-analysis of longitudinal studies and natural experiments. Psychol Med. 2021;51:201–11. https://doi.org/10.1017/S0033291721000015
doi: 10.1017/S0033291721000015 pubmed: 33436130
Laszewska A, Helter T, Simon J. Perceptions of Covid-19 lockdowns and related public health measures in Austria: a longitudinal online survey. BMC Public Health. 2021;21:1502 https://doi.org/10.1186/s12889-021-11476-3
doi: 10.1186/s12889-021-11476-3 pubmed: 34344343 pmcid: 8331215
Stieger S, Lewetz D, Swami V. Emotional well-being under conditions of lockdown: an experience sampling study in Austria during the COVID-19 pandemic. J happiness Stud. 2021;22:2703–20. https://doi.org/10.1007/s10902-020-00337-2
doi: 10.1007/s10902-020-00337-2 pubmed: 33424431 pmcid: 7778412
Ganzel BL, Kim P, Glover GH, Temple E. Resilience after 9/11: multimodal neuroimaging evidence for stress-related change in the healthy adult brain. NeuroImage. 2008;40:788–95. https://doi.org/10.1016/j.neuroimage.2007.12.010
doi: 10.1016/j.neuroimage.2007.12.010 pubmed: 18234524
Nilsen AS, Hilland E, Kogstad N, Heir T, Hauff E, Lien L, et al. Right temporal cortical hypertrophy in resilience to trauma: an MRI study. Eur J Psychotraumatol. 2016;7:31314.
doi: 10.3402/ejpt.v7.31314 pubmed: 27473521

Auteurs

Jakob Unterholzner (J)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.

Alexander Kautzky (A)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.

Murray Bruce Reed (MB)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.

Theresa Friederike Wechsler (TF)

Department for Psychology, Clinical Psychology and Psychotherapy, University of Regensburg, Regensburg, Germany.

Valentin Popper (V)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.

Benjamin Spurny-Dworak (B)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.

Peter Stöhrmann (P)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.

Manfred Klöbl (M)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.

Nimmy Varghese (N)

Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular & Cognitive Neuroscience (MCN), University of Basel, Basel, Switzerland.

Andreas Mühlberger (A)

Department for Psychology, Clinical Psychology and Psychotherapy, University of Regensburg, Regensburg, Germany.

Anne Eckert (A)

Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular & Cognitive Neuroscience (MCN), University of Basel, Basel, Switzerland.

Richard Frey (R)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.

Dan Rujescu (D)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.

Rupert Lanzenberger (R)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.

Thomas Vanicek (T)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria. thomas.vanicek@meduniwien.ac.at.
Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria. thomas.vanicek@meduniwien.ac.at.

Classifications MeSH