Reconstruction of lateral coherence and 2D emittance in plasma betatron X-ray sources.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 Jan 2024
Historique:
received: 02 10 2023
accepted: 16 01 2024
medline: 20 1 2024
pubmed: 20 1 2024
entrez: 19 1 2024
Statut: epublish

Résumé

X-ray sources have a strong social impact, being implemented for biomedical research, material and environmental sciences. Nowadays, compact and accessible sources are made using lasers. We report evidence of nontrivial spectral-angular correlations in a laser-driven betatron X-ray source. Furthermore, by angularly-resolved spectral measurements, we detect the signature of spatial phase modulations by the electron trajectories. This allows the lateral coherence function to be retrieved, leading to the evaluation of the coherence area of the source, determining its brightness. Finally, the proposed methodology allows the unprecedented reconstruction of the size of the X-ray source and the electron beam emittance in the two main emission planes in a single shot. This information will be of fundamental interest for user applications of new radiation sources.

Identifiants

pubmed: 38243043
doi: 10.1038/s41598-024-52231-z
pii: 10.1038/s41598-024-52231-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1719

Informations de copyright

© 2024. The Author(s).

Références

Ferri, J. et al. High-brilliance betatron [Formula: see text]-ray source powered by laser-accelerated electrons. Phys. Rev. Lett. 120, 254802 (2018).
doi: 10.1103/PhysRevLett.120.254802 pubmed: 29979083
Lamač, M., Chaulagain, U., Jurkovičová, L., Nejdl, J. & Bulanov, S. Two-color nonlinear resonances in betatron oscillations of laser accelerated relativistic electrons. Phys. Rev. Res. 3, 033088 (2021).
doi: 10.1103/PhysRevResearch.3.033088
Kozlova, M. et al. Hard x rays from laser-wakefield accelerators in density tailored plasmas. Phys. Rev. X 10, 011061 (2020).
Lei, B., Wang, J., Kharin, V., Zepf, M. & Rykovanov, S. [Formula: see text]-ray generation from plasma wakefield resonant wiggler. Phys. Rev. Lett. 120, 134801 (2018).
doi: 10.1103/PhysRevLett.120.134801 pubmed: 29694227
Rousse, A. et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005 (2004).
doi: 10.1103/PhysRevLett.93.135005 pubmed: 15524731
Döpp, A. et al. Quick X-ray microtomography using a laser-driven betatron source. Optica 5, 199–203 (2018).
doi: 10.1364/OPTICA.5.000199
Kneip, S. et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 100, 105006 (2008).
doi: 10.1103/PhysRevLett.100.105006 pubmed: 18352200
Fourmaux, S. et al. Demonstration of the synchrotron-type spectrum of laser-produced betatron radiation. N. J. Phys. 13, 033017 (2011).
doi: 10.1088/1367-2630/13/3/033017
Pellegrini, C., Marinelli, A. & Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016).
doi: 10.1103/RevModPhys.88.015006
Ta Phuoc, K. et al. Demonstration of the ultrafast nature of laser produced betatron radiation. Phys. Plasmas 14, 080701 (2007).
doi: 10.1063/1.2754624
Curcio, A. & Gatti, G. Time-domain study of the synchrotron radiation emitted from electron beams in plasma focusing channels. Phys. Rev. E 105, 025201 (2022).
doi: 10.1103/PhysRevE.105.025201 pubmed: 35291175
Hornỳ, V. et al. Temporal profile of betatron radiation from laser-driven electron accelerators. Phys. Plasmas 24, 063107 (2017).
doi: 10.1063/1.4985687
Guo, B. et al. High-resolution phase-contrast imaging of biological specimens using a stable betatron X-ray source in the multiple-exposure mode. Sci. Rep. 9, 7796 (2019).
doi: 10.1038/s41598-019-42834-2 pubmed: 31127147 pmcid: 6534593
Fourmaux, S. et al. Single shot phase contrast imaging using laser-produced betatron X-ray beams. Opt. Lett. 36, 2426–2428 (2011).
doi: 10.1364/OL.36.002426 pubmed: 21725433
Wood, J. et al. Ultrafast imaging of laser driven shock waves using betatron X-rays from a laser wakefield accelerator. Sci. Rep. 8, 1–10 (2018).
doi: 10.1038/s41598-018-29347-0
Mahieu, B. et al. Probing warm dense matter using femtosecond x-ray absorption spectroscopy with a laser-produced betatron source. Nat. Commun. 9, 3276 (2018).
doi: 10.1038/s41467-018-05791-4 pubmed: 30115918 pmcid: 6095895
Kettle, B. et al. Single-shot multi-keV X-ray absorption spectroscopy using an ultrashort laser-wakefield accelerator source. Phys. Rev. Lett. 123, 254801 (2019).
doi: 10.1103/PhysRevLett.123.254801 pubmed: 31922780
Kneip, S. et al. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl. Phys. Lett. 99, 093701 (2011).
doi: 10.1063/1.3627216
Kneip, S. et al. Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 6, 980–983 (2010).
doi: 10.1038/nphys1789
Shah, R. C. et al. Coherence-based transverse measurement of synchrotron X-ray radiation from relativistic laser-plasma interaction and laser-accelerated electrons. Phys. Rev. E 74, 045401 (2006).
doi: 10.1103/PhysRevE.74.045401
Esarey, E., Shadwick, B., Catravas, P. & Leemans, W. Synchrotron radiation from electron beams in plasma-focusing channels. Phys. Rev. E 65, 056505 (2002).
doi: 10.1103/PhysRevE.65.056505
Albert, F. et al. Angular dependence of betatron X-ray spectra from a laser-wakefield accelerator. Phys. Rev. Lett. 111, 235004 (2013).
doi: 10.1103/PhysRevLett.111.235004 pubmed: 24476282
Phuoc, K. T. et al. Imaging electron trajectories in a laser-wakefield cavity using betatron X-ray radiation. Phys. Rev. Lett. 97, 225002 (2006).
doi: 10.1103/PhysRevLett.97.225002 pubmed: 17155808
Paroli, B. et al. Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources. Europhys. Lett. 111, 44003 (2015).
doi: 10.1209/0295-5075/111/44003
https://euaps.infn.it/
Curcio, A. et al. Performance study on a soft X-ray betatron radiation source realized in the self-injection regime of laser-plasma wakefield acceleration. Appl. Sci. 12, 12471 (2022).
doi: 10.3390/app122312471
Schnell, M. et al. Deducing the electron-beam diameter in a laser-plasma accelerator using X-ray betatron radiation. Phys. Rev. Lett. 108, 075001 (2012).
doi: 10.1103/PhysRevLett.108.075001 pubmed: 22401215
Curcio, A. et al. Single-shot non-intercepting profile monitor of plasma-accelerated electron beams with nanometric resolution. Appl. Phys. Lett. 111, 133105 (2017).
doi: 10.1063/1.4998932
Albert, F. et al. Betatron oscillations of electrons accelerated in laser wakefields characterized by spectral X-ray analysis. Phys. Rev. E 77, 056402 (2008).
doi: 10.1103/PhysRevE.77.056402
Plateau, G. et al. Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot X-ray spectroscopy. Phys. Rev. Lett. 109, 064802 (2012).
doi: 10.1103/PhysRevLett.109.064802 pubmed: 23006273
Corde, S. et al. Femtosecond X rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1 (2013).
doi: 10.1103/RevModPhys.85.1
Finlay, O. et al. Characterisation of a laser plasma betatron source for high resolution X-ray imaging. Plasma Phys. Control. Fusion 63, 084010 (2021).
doi: 10.1088/1361-6587/ac0fcf
Köhler, A. et al. Single-shot betatron source size measurement from a laser-wakefield accelerator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 829, 265–269 (2016).
doi: 10.1016/j.nima.2016.02.031
Curcio, A. et al. Trace-space reconstruction of low-emittance electron beams through betatron radiation in laser-plasma accelerators. Phys. Rev. Accel. Beams 20, 012801 (2017).
doi: 10.1103/PhysRevAccelBeams.20.012801
Migliorati, M. et al. Intrinsic normalized emittance growth in laser-driven electron accelerators. Phys. Rev. Spec. Top. Accel. Beams 16, 011302 (2013).
doi: 10.1103/PhysRevSTAB.16.011302
Lu, W. et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top. Accel. Beams 10, 061301 (2007).
doi: 10.1103/PhysRevSTAB.10.061301
Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009).
doi: 10.1103/RevModPhys.81.1229
Lehe, R., Kirchen, M., Andriyash, I. A., Godfrey, B. B. & Vay, J.-L. A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm. Comput. Phys. Commun. 203, 66–82 (2016).
doi: 10.1016/j.cpc.2016.02.007
Landau, L. & Lifshitz, E. The Classical Theory of Fields, Course of Theoretical Physics (Pergamon Press, 1971).
Thomas, A. G. R. Scalings for radiation from plasma bubbles. Phys. Plasmas 17 (2010).
Kostyukov, I., Pukhov, A. & Kiselev, S. Phenomenological theory of laser-plasma interaction in “bubble’’ regime. Phys. Plasmas 11, 5256–5264 (2004).
doi: 10.1063/1.1799371

Auteurs

Alessandro Curcio (A)

INFN-LNF, via Enrico Fermi 40, 00044, Frascati, Rome, Italy. alessandro.curcio@lnf.infn.it.

Alessandro Cianchi (A)

Department of Physics, Università di Roma Tor Vergata, Via Ricerca Scientifica 1, 00133, Rome, Italy.
INFN-Tor Vergata, Via Ricerca Scientifica 1, 00133, Rome, Italy.
NAST Centre, Via Ricerca Scientifica 1, 00133, Rome, Italy.

Gemma Costa (G)

INFN-LNF, via Enrico Fermi 40, 00044, Frascati, Rome, Italy.

Alessio Del Dotto (A)

INFN-LNF, via Enrico Fermi 40, 00044, Frascati, Rome, Italy.

Francesco Demurtas (F)

INFN-LNF, via Enrico Fermi 40, 00044, Frascati, Rome, Italy.

Massimo Ferrario (M)

INFN-LNF, via Enrico Fermi 40, 00044, Frascati, Rome, Italy.

Maria Dolores Rodríguez Frías (MDR)

Centro de Laseres Pulsados (CLPU), Edificio M5, Parque Científico, C/ Adaja 8, 37185, Villamayor, Salamanca, Spain.
Dpto. Física y Matemáticas, Universidad de Alcalá, Plaza de San Diego, s/n Alcalá de Henares, Madrid, Spain.

Mario Galletti (M)

Department of Physics, Università di Roma Tor Vergata, Via Ricerca Scientifica 1, 00133, Rome, Italy.
INFN-Tor Vergata, Via Ricerca Scientifica 1, 00133, Rome, Italy.
NAST Centre, Via Ricerca Scientifica 1, 00133, Rome, Italy.

José Antonio Pérez-Hernández (JA)

Centro de Laseres Pulsados (CLPU), Edificio M5, Parque Científico, C/ Adaja 8, 37185, Villamayor, Salamanca, Spain.

Giancarlo Gatti (G)

Centro de Laseres Pulsados (CLPU), Edificio M5, Parque Científico, C/ Adaja 8, 37185, Villamayor, Salamanca, Spain.

Classifications MeSH