Optimizing the use of ketamine to reduce chronic postsurgical pain in women undergoing mastectomy for oncologic indication: study protocol for the KALPAS multicenter randomized controlled trial.
Chronic postsurgical pain
Ketamine
Non-opioid
Postmastectomy pain syndrome
Postoperative pain
Journal
Trials
ISSN: 1745-6215
Titre abrégé: Trials
Pays: England
ID NLM: 101263253
Informations de publication
Date de publication:
19 Jan 2024
19 Jan 2024
Historique:
received:
05
10
2023
accepted:
15
12
2023
medline:
20
1
2024
pubmed:
20
1
2024
entrez:
19
1
2024
Statut:
epublish
Résumé
Mastectomies are commonly performed and strongly associated with chronic postsurgical pain (CPSP), more specifically termed postmastectomy pain syndrome (PMPS), with 25-60% of patients reporting pain 3 months after surgery. PMPS interferes with function, recovery, and compliance with adjuvant therapy. Importantly, it is associated with chronic opioid use, as a recent study showed that 1 in 10 patients continue to use opioids at least 3 months after curative surgery. The majority of PMPS patients are women, and, over the past 10 years, women have outpaced men in the rate of growth in opioid dependence. Standard perioperative multimodal analgesia is only modestly effective in prevention of CPSP. Thus, interventions to reduce CPSP and PMPS are urgently needed. Ketamine is well known to improve pain and reduce opioid use in the acute postoperative period. Additionally, ketamine has been shown to control mood in studies of anxiety and depression. By targeting acute pain and improving mood in the perioperative period, ketamine may be able to prevent the development of CPSP. Ketamine analgesia for long-lasting pain relief after surgery (KALPAS) is a phase 3, multicenter, randomized, placebo-controlled, double-blind trial to study the effectiveness of ketamine in reducing PMPS. The study compares continuous perioperative ketamine infusion vs single-dose ketamine in the postanesthesia care unit vs placebo for reducing PMPS. Participants are followed for 1 year after surgery. The primary outcome is pain at the surgical site at 3 months after the index surgery as assessed with the Brief Pain Inventory-short form pain severity subscale. This project is part of the NIH Helping to End Addiction Long-term (HEAL) Initiative, a nationwide effort to address the opioid public health crisis. This study can substantially impact perioperative pain management and can contribute significantly to combatting the opioid epidemic. ClinicalTrials.gov NCT05037123. Registered on September 8, 2021.
Sections du résumé
BACKGROUND
BACKGROUND
Mastectomies are commonly performed and strongly associated with chronic postsurgical pain (CPSP), more specifically termed postmastectomy pain syndrome (PMPS), with 25-60% of patients reporting pain 3 months after surgery. PMPS interferes with function, recovery, and compliance with adjuvant therapy. Importantly, it is associated with chronic opioid use, as a recent study showed that 1 in 10 patients continue to use opioids at least 3 months after curative surgery. The majority of PMPS patients are women, and, over the past 10 years, women have outpaced men in the rate of growth in opioid dependence. Standard perioperative multimodal analgesia is only modestly effective in prevention of CPSP. Thus, interventions to reduce CPSP and PMPS are urgently needed. Ketamine is well known to improve pain and reduce opioid use in the acute postoperative period. Additionally, ketamine has been shown to control mood in studies of anxiety and depression. By targeting acute pain and improving mood in the perioperative period, ketamine may be able to prevent the development of CPSP.
METHODS
METHODS
Ketamine analgesia for long-lasting pain relief after surgery (KALPAS) is a phase 3, multicenter, randomized, placebo-controlled, double-blind trial to study the effectiveness of ketamine in reducing PMPS. The study compares continuous perioperative ketamine infusion vs single-dose ketamine in the postanesthesia care unit vs placebo for reducing PMPS. Participants are followed for 1 year after surgery. The primary outcome is pain at the surgical site at 3 months after the index surgery as assessed with the Brief Pain Inventory-short form pain severity subscale.
DISCUSSION
CONCLUSIONS
This project is part of the NIH Helping to End Addiction Long-term (HEAL) Initiative, a nationwide effort to address the opioid public health crisis. This study can substantially impact perioperative pain management and can contribute significantly to combatting the opioid epidemic.
TRIAL REGISTRATION
BACKGROUND
ClinicalTrials.gov NCT05037123. Registered on September 8, 2021.
Identifiants
pubmed: 38243266
doi: 10.1186/s13063-023-07884-y
pii: 10.1186/s13063-023-07884-y
doi:
Banques de données
ClinicalTrials.gov
['NCT05037123']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
67Subventions
Organisme : NCI NIH HHS
ID : UH3CA261067
Pays : United States
Organisme : NCATS NIH HHS
ID : U24TR001608-05S3
Pays : United States
Organisme : NCATS NIH HHS
ID : U24TR001597-06S1
Pays : United States
Organisme : NCATS NIH HHS
ID : U24TR001579-06S1
Pays : United States
Organisme : NCATS NIH HHS
ID : U24TR001609
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Meretoja TJ, Leidenius MHK, Tasmuth T, Sipila R, Kalso E. Pain at 12 months after surgery for breast cancer. JAMA. 2014;311(1):90–2. https://doi.org/10.1001/jama.2013.278795 . Epub 2014/01/02.
doi: 10.1001/jama.2013.278795
pubmed: 24381969
Andersen KG, Duriaud HM, Jensen HE, Kroman N, Kehlet H. Predictive factors for the development of persistent pain after breast cancer surgery. Pain. 2015;156(12):2413–22. https://doi.org/10.1097/j.pain.0000000000000298 . Epub 2015/07/16.
doi: 10.1097/j.pain.0000000000000298
pubmed: 26176893
Okamoto A, Yamasaki M, Yokota I, Mori M, Matsuda M, Yamaguchi Y, et al. Classification of acute pain trajectory after breast cancer surgery identifies patients at risk for persistent pain: a prospective observational study. J Pain Res. 2018;11:2197–206. https://doi.org/10.2147/JPR.S171680 .
doi: 10.2147/JPR.S171680
pubmed: 30323654
pmcid: 6179582
Dereu D, Savoldelli GL, Combescure C, Mathivon S, Rehberg B. Development of a simple preoperative risk score for persistent pain after breast cancer surgery: a prospective observational cohort study. Clin J Pain. 2018;34(6):559–65. https://doi.org/10.1097/AJP.0000000000000575 . Epub 2017/12/07.
doi: 10.1097/AJP.0000000000000575
pubmed: 29210805
Wang L, Guyatt GH, Kennedy SA, Romerosa B, Kwon HY, Kaushal A, et al. Predictors of persistent pain after breast cancer surgery: a systematic review and meta-analysis of observational studies. CMAJ. 2016;188(14):E352–61. https://doi.org/10.1503/cmaj.151276 . Epub 2016/07/13.
doi: 10.1503/cmaj.151276
pubmed: 27402075
pmcid: 5047835
Andersen KG, Kehlet H. Persistent pain after breast cancer treatment: a critical review of risk factors and strategies for prevention. J Pain. 2011;12(7):725–46. https://doi.org/10.1016/j.jpain.2010.12.005 . Epub 2011/03/26.
doi: 10.1016/j.jpain.2010.12.005
pubmed: 21435953
Bruce J, Thornton AJ, Powell R, Johnston M, Wells M, Heys SD, et al. Psychological, surgical, and sociodemographic predictors of pain outcomes after breast cancer surgery: a population-based cohort study. Pain. 2014;155(2):232–43. https://doi.org/10.1016/j.pain.2013.09.028 .
doi: 10.1016/j.pain.2013.09.028
pubmed: 24099954
Miaskowski C, Cooper B, Paul SM, West C, Langford D, Levine JD, et al. Identification of patient subgroups and risk factors for persistent breast pain following breast cancer surgery. J Pain. 2012;13(12):1172–87. https://doi.org/10.1016/j.jpain.2012.09.013 . Epub 2012/11/28.
doi: 10.1016/j.jpain.2012.09.013
pubmed: 23182226
pmcid: 3511823
Tasmuth T, Blomqvist C, Kalso E. Chronic post-treatment symptoms in patients with breast cancer operated in different surgical units. Eur J Surg Oncol. 1999;25(1):38–43. https://doi.org/10.1053/ejso.1998.0597 . Epub 1999/04/03.
doi: 10.1053/ejso.1998.0597
pubmed: 10188853
Jung BF, Ahrendt GM, Oaklander AL, Dworkin RH. Neuropathic pain following breast cancer surgery: proposed classification and research update. Pain. 2003;104(1–2):1–13.
doi: 10.1016/S0304-3959(03)00241-0
pubmed: 12855309
Montes A, Roca G, Sabate S, Lao JI, Navarro A, Cantillo J, et al. Genetic and clinical factors associated with chronic postsurgical pain after hernia repair, hysterectomy, and thoracotomy: a two-year multicenter cohort study. Anesthesiology. 2015;122(5):1123–41. https://doi.org/10.1097/ALN.0000000000000611 . Epub 2015/05/20.
doi: 10.1097/ALN.0000000000000611
pubmed: 25985024
Gilron I, Vandenkerkhof E, Katz J, Kehlet H, Carley M. Evaluating the association between acute and chronic pain after surgery: impact of pain measurement methods. Clin J Pain. 2017;33(7):588–94. https://doi.org/10.1097/AJP.0000000000000443 . Epub 2017/02/02.
doi: 10.1097/AJP.0000000000000443
pubmed: 28145910
Schug SA, Bruce J. Risk stratification for the development of chronic postsurgical pain. Pain Rep. 2017;2(6):e627. https://doi.org/10.1097/PR9.0000000000000627 . Epub 2018/02/03.
doi: 10.1097/PR9.0000000000000627
pubmed: 29392241
pmcid: 5741327
Houle TT, Miller S, Lang JE, Booth JL, Curry RS, Harris L, et al. Day-to-day experience in resolution of pain after surgery. Pain. 2017;158(11):2147–54. https://doi.org/10.1097/j.pain.0000000000001015 .
doi: 10.1097/j.pain.0000000000001015
pubmed: 28708763
pmcid: 5640481
Domino EF. Taming the ketamine tiger. 1965. Anesthesiology. 2010;113(3):678–84. https://doi.org/10.1097/ALN.0b013e3181ed09a2 .
doi: 10.1097/ALN.0b013e3181ed09a2
pubmed: 20693870
Sadove MS, Shulman M, Hatano S, Fevold N. Analgesic effects of ketamine administered in subdissociative doses. Anesth Analg. 1971;50(3):452–7.
doi: 10.1213/00000539-197105000-00037
pubmed: 5103784
Sinner B, Graf BM. Ketamine. Handb Exp Pharmacol. 2008;182:313–33. https://doi.org/10.1007/978-3-540-74806-9_15 .
doi: 10.1007/978-3-540-74806-9_15
Sveticic G, Eichenberger U, Curatolo M. Safety of mixture of morphine with ketamine for postoperative patient-controlled analgesia: an audit with 1026 patients. Acta Anaesthesiol Scand. 2005;49(6):870–5. https://doi.org/10.1111/j.1399-6576.2005.00740.x .
doi: 10.1111/j.1399-6576.2005.00740.x
pubmed: 15954974
Zhou H, Zhang Q, Martinez E, Dale J, Hu S, Zhang E, et al. Ketamine reduces aversion in rodent pain models by suppressing hyperactivity of the anterior cingulate cortex. Nat Commun. 2018;9(1):3751. https://doi.org/10.1038/s41467-018-06295-x . Epub 2018/09/16.
doi: 10.1038/s41467-018-06295-x
pubmed: 30218052
pmcid: 6138720
Wang J, Goffer Y, Xu D, Tukey DS, Shamir DB, Eberle SE, et al. A single subanesthetic dose of ketamine relieves depression-like behaviors induced by neuropathic pain in rats. Anesthesiology. 2011;115(4):812–21. https://doi.org/10.1097/ALN.0b013e31822f16ae00000542-201110000-00033 . [pii] Epub 2011/09/22.
doi: 10.1097/ALN.0b013e31822f16ae00000542-201110000-00033
pubmed: 21934410
Zhang Q, Manders T, Tong AP, Yang R, Garg A, Martinez E, et al. Chronic pain induces generalized enhancement of aversion. eLife. 2017;6. https://doi.org/10.7554/eLife.25302 .
Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–64. https://doi.org/10.1001/archpsyc.63.8.856 .
doi: 10.1001/archpsyc.63.8.856
pubmed: 16894061
Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–4.
doi: 10.1016/S0006-3223(99)00230-9
pubmed: 10686270
Ibrahim L, Diazgranados N, Franco-Chaves J, Brutsche N, Henter ID, Kronstein P, et al. Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology. 2012;37(6):1526–33. https://doi.org/10.1038/npp.2011.338 .
doi: 10.1038/npp.2011.338
pubmed: 22298121
pmcid: 3327857
Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry. 2010;67(8):793–802. https://doi.org/10.1001/archgenpsychiatry.2010.90 .
doi: 10.1001/archgenpsychiatry.2010.90
pubmed: 20679587
pmcid: 3000408
Verret M, Lauzier F, Zarychanski R, Perron C, Savard X, Pinard AM, et al. Perioperative use of gabapentinoids for the management of postoperative acute pain: a systematic review and meta-analysis. Anesthesiology. 2020;133(2):265–79. https://doi.org/10.1097/ALN.0000000000003428 . Epub 2020/07/16.
doi: 10.1097/ALN.0000000000003428
pubmed: 32667154
Remerand F, Le Tendre C, Baud A, Couvret C, Pourrat X, Favard L, et al. The early and delayed analgesic effects of ketamine after total hip arthroplasty: a prospective, randomized, controlled, double-blind study. Anesth Analg. 2009;109(6):1963–71. https://doi.org/10.1213/ANE.0b013e3181bdc8a0 .
doi: 10.1213/ANE.0b013e3181bdc8a0
pubmed: 19923527
Yamauchi M, Asano M, Watanabe M, Iwasaki S, Furuse S, Namiki A. Continuous low-dose ketamine improves the analgesic effects of fentanyl patient-controlled analgesia after cervical spine surgery. Anesth Analg. 2008;107(3):1041–4. https://doi.org/10.1213/ane.0b013e31817f1e4a .
doi: 10.1213/ane.0b013e31817f1e4a
pubmed: 18713926
Adam F, Chauvin M, Du Manoir B, Langlois M, Sessler DI, Fletcher D. Small-dose ketamine infusion improves postoperative analgesia and rehabilitation after total knee arthroplasty. Anesth Analg. 2005;100(2):475–80. https://doi.org/10.1213/01.ANE.0000142117.82241.DC .
doi: 10.1213/01.ANE.0000142117.82241.DC
pubmed: 15673878
pmcid: 1388093
Aveline C, Gautier JF, Vautier P, Cognet F, Hetet HL, Attali JY, et al. Postoperative analgesia and early rehabilitation after total knee replacement: a comparison of continuous low-dose intravenous ketamine versus nefopam. Eur J Pain. 2009;13(6):613–9. https://doi.org/10.1016/j.ejpain.2008.08.003 .
doi: 10.1016/j.ejpain.2008.08.003
pubmed: 18793861
Kim SH, Kim SI, Ok SY, Park SY, Kim MG, Lee SJ, et al. Opioid sparing effect of low dose ketamine in patients with intravenous patient-controlled analgesia using fentanyl after lumbar spinal fusion surgery. Korean J Anesthesiol. 2013;64(6):524–8. https://doi.org/10.4097/kjae.2013.64.6.524 .
doi: 10.4097/kjae.2013.64.6.524
pubmed: 23814653
pmcid: 3695250
Zakine J, Samarcq D, Lorne E, Moubarak M, Montravers P, Beloucif S, et al. Postoperative ketamine administration decreases morphine consumption in major abdominal surgery: a prospective, randomized, double-blind, controlled study. Anesth Analg. 2008;106(6):1856–61. https://doi.org/10.1213/ane.0b013e3181732776 .
doi: 10.1213/ane.0b013e3181732776
pubmed: 18499623
Webb AR, Skinner BS, Leong S, Kolawole H, Crofts T, Taverner M, et al. The addition of a small-dose ketamine infusion to tramadol for postoperative analgesia: a double-blinded, placebo-controlled, randomized trial after abdominal surgery. Anesth Analg. 2007;104(4):912–7. https://doi.org/10.1213/01.ane.0000256961.01813.da .
doi: 10.1213/01.ane.0000256961.01813.da
pubmed: 17377106
Garg N, Panda NB, Gandhi KA, Bhagat H, Batra YK, Grover VK, et al. Comparison of Small dose ketamine and dexmedetomidine infusion for postoperative analgesia in spine surgery–a prospective randomized double-blind placebo controlled study. J Neurosurg Anesthesiol. 2016;28(1):27–31. https://doi.org/10.1097/ANA.0000000000000193 .
doi: 10.1097/ANA.0000000000000193
pubmed: 26018671
Wang L, Johnston B, Kaushal A, Cheng D, Zhu F, Martin J. Ketamine added to morphine or hydromorphone patient-controlled analgesia for acute postoperative pain in adults: a systematic review and meta-analysis of randomized trials. Can J Anaesth. 2016;63(3):311–25. https://doi.org/10.1007/s12630-015-0551-4 .
doi: 10.1007/s12630-015-0551-4
pubmed: 26659198
Assouline B, Tramer MR, Kreienbuhl L, Elia N. Benefit and harm of adding ketamine to an opioid in a patient-controlled analgesia device for the control of postoperative pain: systematic review and meta-analyses of randomized controlled trials with trial sequential analyses. Pain. 2016;157(12):2854–64. https://doi.org/10.1097/j.pain.0000000000000705 .
doi: 10.1097/j.pain.0000000000000705
pubmed: 27780181
Barreveld AM, Correll DJ, Liu X, Max B, McGowan JA, Shovel L, et al. Ketamine decreases postoperative pain scores in patients taking opioids for chronic pain: results of a prospective, randomized, double-blind study. Pain Med. 2013;14(6):925–34. https://doi.org/10.1111/pme.12086 .
doi: 10.1111/pme.12086
pubmed: 23786558
Nielsen RV, Fomsgaard JS, Siegel H, Martusevicius R, Nikolajsen L, Dahl JB, et al. Intraoperative ketamine reduces immediate postoperative opioid consumption after spinal fusion surgery in chronic pain patients with opioid dependency: a randomized, blinded trial. Pain. 2017;158(3):463–70. https://doi.org/10.1097/j.pain.0000000000000782 .
doi: 10.1097/j.pain.0000000000000782
pubmed: 28067693
Loftus RW, Yeager MP, Clark JA, Brown JR, Abdu WA, Sengupta DK, et al. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology. 2010;113(3):639–46. https://doi.org/10.1097/ALN.0b013e3181e90914 .
doi: 10.1097/ALN.0b013e3181e90914
pubmed: 20693876
Sing DC, Barry JJ, Cheah JW, Vail TP, Hansen EN. Long-acting opioid use independently predicts perioperative complication in total joint arthroplasty. J Arthroplasty. 2016;31(9 Suppl):170-4.e1. https://doi.org/10.1016/j.arth.2016.02.068 .
doi: 10.1016/j.arth.2016.02.068
pubmed: 27451080
Cron DC, Englesbe MJ, Bolton CJ, Joseph MT, Carrier KL, Moser SE, et al. Preoperative opioid use is independently associated with increased costs and worse outcomes after major abdominal surgery. Ann Surg. 2017;265(4):695–701. https://doi.org/10.1097/SLA.0000000000001901 .
doi: 10.1097/SLA.0000000000001901
pubmed: 27429021
Waljee JF, Cron DC, Steiger RM, Zhong L, Englesbe MJ, Brummett CM. Effect of preoperative opioid exposure on healthcare utilization and expenditures following elective abdominal surgery. Ann Surg. 2017;265(4):715–21. https://doi.org/10.1097/SLA.0000000000002117 .
doi: 10.1097/SLA.0000000000002117
pubmed: 28151795
Faour M, Anderson JT, Haas AR, Percy R, Woods ST, Ahn UM, et al. Neck pain, preoperative opioids, and functionality after cervical fusion. Orthopedics. 2017;40(1):25–32. https://doi.org/10.3928/01477447-20161013-02 .
doi: 10.3928/01477447-20161013-02
pubmed: 27755643
Lentine KL, Lam NN, Xiao H, Tuttle-Newhall JE, Axelrod D, Brennan DC, et al. Associations of pre-transplant prescription narcotic use with clinical complications after kidney transplantation. Am J Nephrol. 2015;41(2):165–76. https://doi.org/10.1159/000377685 .
doi: 10.1159/000377685
pubmed: 25832723
Wilson JL, Poulin PA, Sikorski R, Nathan HJ, Taljaard M, Smyth C. Opioid use among same-day surgery patients: prevalence, management and outcomes. Pain Res Manag. 2015;20(6):300–4.
doi: 10.1155/2015/897491
pubmed: 26357683
pmcid: 4676499
Jouguelet-Lacoste J, La Colla L, Schilling D, Chelly JE. The use of intravenous infusion or single dose of low-dose ketamine for postoperative analgesia: a review of the current literature. Pain medicine. 2015;16(2):383–403. https://doi.org/10.1111/pme.12619 . Epub 2014/12/23.
doi: 10.1111/pme.12619
pubmed: 25530168
Boenigk K, Echevarria GC, Nisimov E, von Bergen Granell AE, Cuff GE, Wang J, et al. Low-dose ketamine infusion reduces postoperative hydromorphone requirements in opioid-tolerant patients following spinal fusion: a randomised controlled trial. Eur J Anaesthesiol. 2019;36(1):8–15. https://doi.org/10.1097/EJA.0000000000000877 . Epub 2018/08/17.
doi: 10.1097/EJA.0000000000000877
pubmed: 30113350
Laskowski K, Stirling A, McKay WP, Lim HJ. A systematic review of intravenous ketamine for postoperative analgesia. Can J of anaesth. 2011;58(10):911–23. https://doi.org/10.1007/s12630-011-9560-0 .
doi: 10.1007/s12630-011-9560-0
Doan LV, Wang J. An update on the basic and clinical science of ketamine analgesia. Clin J Pain. 2018;34(11):1077–88. https://doi.org/10.1097/AJP.0000000000000635 . Epub 2018/06/22.
doi: 10.1097/AJP.0000000000000635
pubmed: 29927768
Hayes C, Armstrong-Brown A, Burstal R. Perioperative intravenous ketamine infusion for the prevention of persistent post-amputation pain: a randomized, controlled trial. Anaesth Intensive Care. 2004;32(3):330–8.
doi: 10.1177/0310057X0403200305
pubmed: 15264726
Suzuki M, Haraguti S, Sugimoto K, Kikutani T, Shimada Y, Sakamoto A. Low-dose intravenous ketamine potentiates epidural analgesia after thoracotomy. Anesthesiology. 2006;105(1):111–9.
doi: 10.1097/00000542-200607000-00020
pubmed: 16810002
Mcnicol ED, Schumann R, Haroutounian S. A systematic review and meta-analysis of ketamine for the prevention of persistent post-surgical pain. Acta Anaesthesiol Scand. 2014;58(10):1199–213. https://doi.org/10.1111/aas.12377 .
doi: 10.1111/aas.12377
pubmed: 25060512
Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. Nmda receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475(7354):91–5. https://doi.org/10.1038/nature10130 .
doi: 10.1038/nature10130
pubmed: 21677641
pmcid: 3172695
Garcia LS, Comim CM, Valvassori SS, Reus GZ, Barbosa LM, Andreazza AC, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases bdnf levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(1):140–4. https://doi.org/10.1016/j.pnpbp.2007.07.027 .
doi: 10.1016/j.pnpbp.2007.07.027
pubmed: 17884272
Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63(4):349–52. https://doi.org/10.1016/j.biopsych.2007.05.028 .
doi: 10.1016/j.biopsych.2007.05.028
pubmed: 17643398
Gould TD, O’Donnell KC, Dow ER, Du J, Chen G, Manji HK. Involvement of Ampa receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology. 2008;54(3):577–87. https://doi.org/10.1016/j.neuropharm.2007.11.002 .
doi: 10.1016/j.neuropharm.2007.11.002
pubmed: 18096191
Koike H, Chaki S. Requirement of Ampa receptor stimulation for the sustained antidepressant activity of ketamine and ly341495 during the forced swim test in rats. Behav Brain Res. 2014;271:111–5. https://doi.org/10.1016/j.bbr.2014.05.065 .
doi: 10.1016/j.bbr.2014.05.065
pubmed: 24909673
Chourbaji S, Vogt MA, Fumagalli F, Sohr R, Frasca A, Brandwein C, et al. Ampa receptor subunit 1 (Glur-a) knockout mice model the glutamate hypothesis of depression. FASEB J. 2008;22(9):3129–34. https://doi.org/10.1096/fj.08-106450 .
doi: 10.1096/fj.08-106450
pubmed: 18492725
Yuen EY, Wei J, Liu W, Zhong P, Li X, Yan Z. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron. 2012;73(5):962–77. https://doi.org/10.1016/j.neuron.2011.12.033 . Epub 2012/03/13.
doi: 10.1016/j.neuron.2011.12.033
pubmed: 22405206
pmcid: 3302010
Liu H, Wen LM, Qiao H, An SC. Modulation of hippocampal glutamate and Nmda/Ampa receptor by homocysteine in chronic unpredictable mild stress-induced rat depression. Sheng Li Xue Bao. 2013;65(1):61–71.
pubmed: 23426515
Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. Mtor-dependent synapse formation underlies the rapid antidepressant effects of Nmda antagonists. Science. 2010;329(5994):959–64. https://doi.org/10.1126/science.1190287 .
doi: 10.1126/science.1190287
pubmed: 20724638
pmcid: 3116441
Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ. Ketamine-induced antidepressant effects are associated with ampa receptors-mediated upregulation of mtor and bdnf in rat hippocampus and prefrontal cortex. Eur Psychiatry. 2014;29(7):419–23. https://doi.org/10.1016/j.eurpsy.2013.10.005 .
doi: 10.1016/j.eurpsy.2013.10.005
pubmed: 24321772
Yang C, Hu YM, Zhou ZQ, Zhang GF, Yang JJ. Acute administration of ketamine in rats increases hippocampal Bdnf and Mtor levels during forced swimming test. Ups J Med Sci. 2013;118(1):3–8. https://doi.org/10.3109/03009734.2012.724118 .
doi: 10.3109/03009734.2012.724118
pubmed: 22970723
pmcid: 3572668
Dale J, Zhou H, Zhang Q, Martinez E, Hu S, Liu K, et al. Scaling up cortical control inhibits pain. Cell Rep. 2018;23(5):1301–13. https://doi.org/10.1016/j.celrep.2018.03.139 .
doi: 10.1016/j.celrep.2018.03.139
pubmed: 29719246
pmcid: 5965697
Sheikh S, Hendry P. The expanding role of ketamine in the emergency department. Drugs. 2018;78(7):727–35. https://doi.org/10.1007/s40265-018-0904-8 .
doi: 10.1007/s40265-018-0904-8
pubmed: 29651740
Karlow N, Schlaepfer CH, Stoll CRT, Doering M, Carpenter CR, Colditz GA, et al. A systematic review and meta-analysis of ketamine as an alternative to opioids for acute pain in the emergency department. Acad Emerg Med. 2018;25(10):1086–97. https://doi.org/10.1111/acem.13502 .
doi: 10.1111/acem.13502
pubmed: 30019434
Pourmand A, Mazer-Amirshahi M, Royall C, Alhawas R, Shesser R. Low dose ketamine use in the emergency department, a new direction in pain management. Am J Emerg Med. 2017;35(6):918–21. https://doi.org/10.1016/j.ajem.2017.03.005 .
doi: 10.1016/j.ajem.2017.03.005
pubmed: 28285863
Wang J, Echevarria GC, Doan L, Ekasumara N, Calvino S, Chae F, et al. Effects of a single subanaesthetic dose of ketamine on pain and mood after laparoscopic bariatric surgery: a randomised double-blind placebo controlled study. Eur J Anaesthesiol. 2019;36(1):16–24. https://doi.org/10.1097/EJA.0000000000000860 . Epub 2018/08/11.
doi: 10.1097/EJA.0000000000000860
pubmed: 30095550
Cleeland CS, Ryan KM. Pain assessment: global use of the Brief Pain Inventory. Ann Acad Med Singapore. 1994;23(2):129–38 Epub 1994/03/01.
pubmed: 8080219
Dworkin RH, Turk DC, Farrar JT, Haythornthwaite JA, Jensen MP, Katz NP, et al. Core outcome measures for chronic pain clinical trials: immpact recommendations. Pain. 2005;113(1–2):9–19. https://doi.org/10.1016/j.pain.2004.09.012 . Epub 2004/12/29.
doi: 10.1016/j.pain.2004.09.012
pubmed: 15621359
Kean J, Monahan PO, Kroenke K, Wu J, Yu Z, Stump TE, et al. Comparative responsiveness of the PROMIS pain interference short forms, brief pain inventory, Peg, and Sf-36 Bodily Pain Subscale. Medical Care. 2016;54(4):414–21. https://doi.org/10.1097/MLR.0000000000000497 . Epub 2016/01/26.
doi: 10.1097/MLR.0000000000000497
pubmed: 26807536
pmcid: 4792763
Kroenke K, Theobald D, Wu J, Tu W, Krebs EE. Comparative responsiveness of pain measures in cancer patients. J Pain. 2012;13(8):764–72. https://doi.org/10.1016/j.jpain.2012.05.004S1526-5900(12)00656-6 . [pii] Epub 2012/07/18.
doi: 10.1016/j.jpain.2012.05.004S1526-5900(12)00656-6
pubmed: 22800982
pmcid: 4269348
Piaggio G, Elbourne DR, Pocock SJ, Evans SJ, Altman DG, Group C. Reporting of noninferiority and equivalence randomized trials: extension of the CONSORT 2010 statement. JAMA. 2012;308(24):2594–604. https://doi.org/10.1001/jama.2012.87802 . Epub 2012/12/27.
doi: 10.1001/jama.2012.87802
pubmed: 23268518
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.1023/A:1010933404324 .
doi: 10.1023/A:1010933404324
Laska E, Siegel C, Lin Z. A likely responder approach for the analysis of randomized controlled trials. Contemp Clin Trials. 2022;114:106688. https://doi.org/10.1016/j.cct.2022.106688 . Epub 2022/01/28.
doi: 10.1016/j.cct.2022.106688
pubmed: 35085831
pmcid: 8934276
Steyerberg EW. Study design for prediction models. In: Steyerberg EW, editor. Clinical prediction models: a practical approach to development, validation, and updating. New York: Springer, New York; 2009. p. 33–52.
doi: 10.1007/978-0-387-77244-8_3
Qian M, Murphy SA. Performance guarantees for individualized treatment rules. Ann Stat. 2011;39(2):1180–210. https://doi.org/10.1214/10-AOS864 . Epub 2011/06/15.
doi: 10.1214/10-AOS864
pubmed: 21666835
pmcid: 3110016
Zhao Y, Zeng D, Rush AJ, Kosorok MR. Estimating individualized treatment rules using outcome weighted learning. J Am Stat Assoc. 2012;107(449):1106–18. https://doi.org/10.1080/01621459.2012.695674 . Epub 2013/05/01.
doi: 10.1080/01621459.2012.695674
pubmed: 23630406
pmcid: 3636816
Park H, Tarpey T, Liu M, Goldfeld K, Wu Y, Wu D, et al. Development and validation of a treatment benefit index to identify hospitalized patients with Covid-19 who may benefit from convalescent plasma. JAMA Netw Open. 2022;5(1):e2147375. https://doi.org/10.1001/jamanetworkopen.2021.47375 . Epub 2022/01/26.
doi: 10.1001/jamanetworkopen.2021.47375
pubmed: 35076698
pmcid: 8790670
Kosorok MR, Laber EB. Precision medicine. Annu Rev Stat Appl. 2019;6:263–86. https://doi.org/10.1146/annurev-statistics-030718-105251 . Epub 2019/05/11.
doi: 10.1146/annurev-statistics-030718-105251
pubmed: 31073534
pmcid: 6502478
Hahn PR, Murray JS, Carvalho CM. Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects (with discussion). Bayesian Anal. 2020;15(3):965-2020,1056.
doi: 10.1214/19-BA1195
Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? Int J Methods Psychiatr Res. 2011;20(1):40–9. https://doi.org/10.1002/mpr.329 . Epub 2011/04/19.
doi: 10.1002/mpr.329
pubmed: 21499542
pmcid: 3074241
Toutenburg H, Rubin DB. Multiple imputation for nonresponse in surveys. Stat Pap. 1990;31(1):180. https://doi.org/10.1007/BF02924688 .
doi: 10.1007/BF02924688
Little RJ, Wang Y. Pattern-mixture models for multivariate incomplete data with covariates. Biometrics. 1996;52(1):98–111. Epub 1996/03/01.
doi: 10.2307/2533148
pubmed: 8934587