Macrophage migration inhibitory factor reversed senescent phenotype in human chondrocytes in vitro.
Chondrocytes
Macrophage migration inhibitory factor
Osteoarthritis
Senescence
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
21 Jan 2024
21 Jan 2024
Historique:
received:
26
09
2023
accepted:
04
12
2023
medline:
21
1
2024
pubmed:
21
1
2024
entrez:
21
1
2024
Statut:
epublish
Résumé
The senescence of chondrocytes, which is closely linked to the development of osteoarthritis (OA), has been found to be influenced by the inflammatory environment of joint cavity. However, there remains a lack of comprehensive understanding regarding the specific mechanisms through which cytokine impacts chondrocytes senescence. To investigate the effects of MIF on the chondrocytes senescence and explore the underlying mechanism. Human cytokine array and ELISA were used for the level of MIF in synovium fluid. CCK-8 was used for chondrocytes viability. IF, WB, SA-β-gal staining and flow cytometry were used for the chondrogenic, apoptotic and senescent phenotype of chondrocytes. The level of MIF was significantly increased in OA patients. MIF significantly reversed the senescent phenotype induced by LPS pretreatment in human chondrocytes. MIF significantly enhanced the expression of Col II, SOX9, and ACAN in LPS pre-treated human chondrocytes. Furthermore, MIF significantly inhibited the apoptosis of LPS-induced senescent chondrocytes. Increased level of MIF in osteoarthritic joint cavity might effectively suppress the senescent phenotype and simultaneously improve the chondrogenic phenotype in chondrocytes, the underlying mechanism was likely to be independent of apoptosis.
Sections du résumé
BACKGROUND
BACKGROUND
The senescence of chondrocytes, which is closely linked to the development of osteoarthritis (OA), has been found to be influenced by the inflammatory environment of joint cavity. However, there remains a lack of comprehensive understanding regarding the specific mechanisms through which cytokine impacts chondrocytes senescence.
PURPOSE
OBJECTIVE
To investigate the effects of MIF on the chondrocytes senescence and explore the underlying mechanism.
METHODS
METHODS
Human cytokine array and ELISA were used for the level of MIF in synovium fluid. CCK-8 was used for chondrocytes viability. IF, WB, SA-β-gal staining and flow cytometry were used for the chondrogenic, apoptotic and senescent phenotype of chondrocytes.
RESULTS
RESULTS
The level of MIF was significantly increased in OA patients. MIF significantly reversed the senescent phenotype induced by LPS pretreatment in human chondrocytes. MIF significantly enhanced the expression of Col II, SOX9, and ACAN in LPS pre-treated human chondrocytes. Furthermore, MIF significantly inhibited the apoptosis of LPS-induced senescent chondrocytes.
CONCLUSION
CONCLUSIONS
Increased level of MIF in osteoarthritic joint cavity might effectively suppress the senescent phenotype and simultaneously improve the chondrogenic phenotype in chondrocytes, the underlying mechanism was likely to be independent of apoptosis.
Identifiants
pubmed: 38245877
doi: 10.1007/s11033-023-09101-0
pii: 10.1007/s11033-023-09101-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
154Subventions
Organisme : Chongqing Postdoctoral Research Project Special Fund
ID : 2021XM3033
Organisme : Chongqing Natural Science Foundation
ID : cstc2021jcyj-msxmX0135
Organisme : Chongqing Key Laboratory of Precision Medicine in Joint Surgery
ID : 425Z2138
Organisme : Chongqing Excellent Scientist Project
ID : 425Z2W21
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Johnson VL, Hunter DJ (2014) The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 28(1):5–15
pubmed: 24792942
doi: 10.1016/j.berh.2014.01.004
Sharma L (2021) Osteoarthritis of the Knee. N Engl J Med 384(1):51–59
pubmed: 33406330
doi: 10.1056/NEJMcp1903768
Childs BG, Gluscevic M, Baker DJ et al (2017) Senescent cells: an emerging target for Diseases of ageing. Nat Rev Drug Discov 16(10):718–735
pubmed: 28729727
pmcid: 5942225
doi: 10.1038/nrd.2017.116
Coryell PR, Diekman BO, Loeser RF (2021) Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 17(1):47–57
pubmed: 33208917
doi: 10.1038/s41584-020-00533-7
Kelly PN (2017) Targeting senescence to combat osteoarthritis. Science 356(6338):595–596
pubmed: 28495739
doi: 10.1126/science.356.6338.595-b
Xu M, Bradley EW, Weivoda MM et al (2017) Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A Biol Sci Med Sci 72(6):780–785
pubmed: 27516624
He S, Sharpless NE (2017) Senescence in health and disease. Cell 169(6):1000–1011
pubmed: 28575665
pmcid: 5643029
doi: 10.1016/j.cell.2017.05.015
Xie J, Wang Y, Lu L et al (2021) Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Res Rev 70:101413
pubmed: 34298194
doi: 10.1016/j.arr.2021.101413
Batshon G, Elayyan J, Qiq O et al (2020) Serum NT/CT SIRT1 ratio reflects early osteoarthritis and chondrosenescence. Ann Rheum Dis 79(10):1370–1380
pubmed: 32665267
doi: 10.1136/annrheumdis-2020-217072
Jeon OH, Kim C, Laberge RM et al (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23(6):775–781
pubmed: 28436958
pmcid: 5785239
doi: 10.1038/nm.4324
Bloom BR, Bennett B (1966) Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153(3731):80–82
pubmed: 5938421
doi: 10.1126/science.153.3731.80
Calandra T, Bernhagen J, Mitchell RA et al (1994) The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med 179(6):1895–1902
pubmed: 8195715
doi: 10.1084/jem.179.6.1895
Liu M, Hu C (2012) Association of MIF in serum and synovial fluid with severity of knee osteoarthritis. Clin Biochem 45(10–11):737–739
pubmed: 22449335
doi: 10.1016/j.clinbiochem.2012.03.012
Leech M, Metz C, Hall P et al (1999) Macrophage migration inhibitory factor in rheumatoid arthritis: evidence of proinflammatory function and regulation by glucocorticoids. Arthritis Rheum 42(8):1601–1608
pubmed: 10446857
doi: 10.1002/1529-0131(199908)42:8<1601::AID-ANR6>3.0.CO;2-B
Onodera S, Tanji H, Suzuki K et al (1999) High expression of macrophage migration inhibitory factor in the synovial tissues of rheumatoid joints. Cytokine 11(2):163–167
pubmed: 10089139
doi: 10.1006/cyto.1998.0402
Rowe MA, Harper LR, McNulty MA et al (2017) Reduced osteoarthritis severity in aged mice with deletion of macrophage migration inhibitory factor. Arthritis Rheumatol 69(2):352–361
pubmed: 27564840
pmcid: 5274570
doi: 10.1002/art.39844
Llamas-Covarrubias MA, Valle Y, Navarro-Hernandez RE et al (2012) Serum levels of macrophage migration inhibitory factor are associated with rheumatoid arthritis course. Rheumatol Int 32(8):2307–2311
pubmed: 21607559
doi: 10.1007/s00296-011-1951-6
Wakabayashi K, Otsuka K, Sato M et al (2012) Elevated serum levels of macrophage migration inhibitory factor and their significant correlation with rheumatoid vasculitis disease activity. Mod Rheumatol 22(1):59–65
pubmed: 21607712
doi: 10.3109/s10165-011-0466-z
Fu Z, Song X, Guo L et al (2019) Effects of conditioned medium from osteoarthritic cartilage fragments on donor-matched infrapatellar fat pad-derived mesenchymal stromal cells. Am J Sports Med 47(12):2927–2936
pubmed: 31461339
doi: 10.1177/0363546519869241
Zhuang L, Xia W, Chen D et al (2020) Exosomal LncRNA-NEAT1 derived from MIF-treated mesenchymal stem cells protected against doxorubicin-induced cardiac senescence through sponging miR-221-3p. J Nanobiotechnol 18(1):157
doi: 10.1186/s12951-020-00716-0
Xu X, Pang J, Chen Y et al (2016) Macrophage migration inhibitory factor (MIF) Deficiency exacerbates aging-induced cardiac remodeling and dysfunction despite improved inflammation: role of autophagy regulation. Sci Rep 6:22488
pubmed: 26940544
pmcid: 4778027
doi: 10.1038/srep22488
Welford SM, Bedogni B, Gradin K et al (2006) HIF1alpha delays premature senescence through the activation of MIF. Genes Dev 20(24):3366–3371
pubmed: 17142669
pmcid: 1698444
doi: 10.1101/gad.1471106
Toh WS, Brittberg M, Farr J et al (2016) Cellular senescence in aging and osteoarthritis. Acta Orthop 87(sup363):6–14
pubmed: 27658487
pmcid: 5389431
doi: 10.1080/17453674.2016.1235087
Rahmati M, Nalesso G, Mobasheri A et al (2017) Aging and osteoarthritis: central role of the extracellular matrix. Ageing Res Rev 40:20–30
pubmed: 28774716
doi: 10.1016/j.arr.2017.07.004
Benderdour M, Martel-Pelletier J, Pelletier JP et al (2015) Cellular Aging, senescence and autophagy processes in Osteoarthritis. Curr Aging Sci 8(2):147–157
pubmed: 26212056
doi: 10.2174/1874609808666150727111530
Loeser RF (2009) Aging and osteoarthritis: the role of chondrocytes senescence and aging changes in the cartilage matrix. Osteoarthr Cartil 17(8):971–979
doi: 10.1016/j.joca.2009.03.002
Collins JA, Diekman BO, Loeser RF (2018) Targeting aging for disease modification in osteoarthritis. Curr Opin Rheumatol 30(1):101–107
pubmed: 28957964
pmcid: 5886778
doi: 10.1097/BOR.0000000000000456
Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23(9):1072–1079
pubmed: 28825716
pmcid: 5657592
doi: 10.1038/nm.4385
De R, Sarkar S, Mazumder S et al (2018) Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-kappaB signaling. J Biol Chem 293(51):19740–19760
pubmed: 30366984
pmcid: 6314129
doi: 10.1074/jbc.RA118.003935
Soppert J, Kraemer S, Beckers C et al (2018) Soluble CD74 reroutes MIF/CXCR4/AKT-Mediated survival of cardiac myofibroblasts to Necroptosis. J Am Heart Assoc 7(17):e9384
doi: 10.1161/JAHA.118.009384
Hu Y, Xia W, Hou M (2018) Macrophage migration inhibitory factor serves a pivotal role in the regulation of radiation-induced cardiac senescencethrough rebalancing the microRNA-34a/sirtuin 1 signaling pathway. Int J Mol Med 42(5):2849–2858
pubmed: 30226567
Palumbo S, Tsai TL, Li WJ (2014) Macrophage migration inhibitory factor regulates AKT signaling in hypoxic culture to modulate senescence of human mesenchymal stem cells. Stem Cells Dev 23(8):852–865
pubmed: 24274936
doi: 10.1089/scd.2013.0294
Sauler M, Leng L, Trentalange M et al (2014) Macrophage migration inhibitory factor deficiency in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 306(6):L487–L496
pubmed: 24441872
pmcid: 3949087
doi: 10.1152/ajplung.00284.2013
Xia W, Zhang F, Xie C et al (2015) Macrophage migration inhibitory factor confers resistance to senescence through CD74-dependent AMPK-FOXO3a signaling in mesenchymal stem cells. Stem Cell Res Ther 6(1):82
pubmed: 25896286
pmcid: 4453287
doi: 10.1186/s13287-015-0076-3
Zhang Y, Zhu W, He H et al (2019) Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. Aging 11(24):12641–12660
pubmed: 31881006
pmcid: 6949107
doi: 10.18632/aging.102592
Fujihara Y, Hikita A, Takato T et al (2018) Roles of macrophage migration inhibitory factor in cartilage tissue engineering. J Cell Physiol 233(2):1490–1499
pubmed: 28574571
doi: 10.1002/jcp.26036
Bolstad J (1989) Health care Norway. Regulation of health care–systematic or haphazard? Sykepleien 77(9):25–26
pubmed: 2756484
Zhang W, Zheng J, Meng J et al (2017) Macrophage migration inhibitory factor knockdown inhibit viability and induce apoptosis of PVM/Ms. Mol Med Rep 16(6):8643–8648
pubmed: 28990052
pmcid: 5779918
doi: 10.3892/mmr.2017.7684
Mitchell RA, Liao H, Chesney J et al (2002) Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci U S A 99(1):345–350
pubmed: 11756671
doi: 10.1073/pnas.012511599
Hudson JD, Shoaibi MA, Maestro R et al (1999) A proinflammatory cytokine inhibits p53 Tumor suppressor activity. J Exp Med 190(10):1375–1382
pubmed: 10562313
pmcid: 2195698
doi: 10.1084/jem.190.10.1375
Nemajerova A, Mena P, Fingerle-Rowson G et al (2007) Impaired DNA damage checkpoint response in MIF-deficient mice. EMBO J 26(4):987–997
pubmed: 17290223
pmcid: 1852846
doi: 10.1038/sj.emboj.7601564