Cold exposure modulates potential brown adipokines in humans, but only FGF21 is associated with brown adipose tissue volume.
Journal
Obesity (Silver Spring, Md.)
ISSN: 1930-739X
Titre abrégé: Obesity (Silver Spring)
Pays: United States
ID NLM: 101264860
Informations de publication
Date de publication:
22 Jan 2024
22 Jan 2024
Historique:
revised:
27
10
2023
received:
03
07
2023
accepted:
13
11
2023
medline:
22
1
2024
pubmed:
22
1
2024
entrez:
22
1
2024
Statut:
aheadofprint
Résumé
The study objective was to investigate the effect of cold exposure on the plasma levels of five potential human brown adipokines (chemokine ligand 14 [CXCL14], growth differentiation factor 15 [GDF15], fibroblast growth factor 21 [FGF21], interleukin 6 [IL6], and bone morphogenic protein 8b [BMP8b]) and to study whether such cold-induced effects are related to brown adipose tissue (BAT) volume, activity, or radiodensity in young humans. Plasma levels of brown adipokines were measured before and 1 h and 2 h after starting an individualized cold exposure in 30 young adults (60% women, 21.9 ± 2.3 y; 24.9 ± 5.1 kg/m Cold exposure increased the concentration of CXCL14 (Δ2h = 0.58 ± 0.98 ng/mL; p = 0.007), GDF15 (Δ2h = 19.63 ± 46.2 pg/mL; p = 0.013), FGF21 (Δ2h = 33.72 ± 55.13 pg/mL; p = 0.003), and IL6 (Δ1h = 1.98 ± 3.56 pg/mL; p = 0.048) and reduced BMP8b (Δ2h = -37.12 ± 83.53 pg/mL; p = 0.022). The cold-induced increase in plasma FGF21 was positively associated with BAT volume (Δ2h: β = 0.456; R Cold exposure modulates plasma levels of several potential brown adipokines in humans, whereas only cold-induced changes in FGF21 levels are associated with BAT volume. These findings suggest that human BAT might contribute to the circulatory pool of FGF21.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Agencia Estatal de Investigación
ID : DEP2016- 79512-R
Organisme : AstraZeneca HealthCare Foundation
Organisme : Fundación Alfonso Martin Escudero
Organisme : Fundación Iberoamericana de Nutrición
Organisme : Instituto de Salud Carlos III
ID : PI13/01393
Organisme : Junta de Andalucia Consejería de Economía, Conocimiento, Empresas y Universidad
ID : P18-RT-4455
Organisme : Junta de Andalucía, Consejería de Conocimiento, Investigación y Universidades
ID : SOMM17/6107/UGR
Organisme : Spanish Ministry of Education
ID : FPU13/04365
Organisme : Spanish Ministry of Education
ID : FPU16/02828
Organisme : Spanish Ministry of Education
ID : FPU16/03653
Organisme : Redes Temáticas De Investigación Cooperativa
ID : Red SAMID RD16/0022
Organisme : University of Granada
ID : Plan Propio de Investigación 2016-Excellence actions
Organisme : University of Granada
ID : Plan Propio de Investigación 2018-Contrato Perfec
Organisme : University of Granada
ID : Plan de Resilencia UGR: Ayudas Margarita Salas
Informations de copyright
© 2024 The Authors. Obesity published by Wiley Periodicals LLC on behalf of The Obesity Society.
Références
Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown adipose tissue energy metabolism in humans. Front Endocrinol (Lausanne). 2018;9:1-21.
Brondani L, Assmann TS, Duarte GCK, Gross JL, Canani LH, Crispim D. The role of the uncoupling protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus. Arq Bras Endocrinol Metabol. 2012;56(4):215-225.
Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509-1517.
Carpentier AC, Blondin DP, Haman F, Richard D. Brown adipose tissue-a translational perspective. Endocr Rev. 2023;44:143-192.
Gavaldà-Navarro A, Villarroya J, Cereijo R, Giralt M, Villarroya F. The endocrine role of brown adipose tissue: an update on actors and actions. Rev Endocr Metab Disord. 2022;23:31-41.
Cereijo R, Gavaldà-Navarro A, Cairó M, et al. CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab. 2018;28:750-763.e6.
Campderrós L, Moure R, Cairó M, et al. Brown adipocytes secrete GDF15 in response to thermogenic activation. Obesity (Silver Spring). 2019;27:1606-1616.
Hondares E, Iglesias R, Giralt A, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286:12983-12990.
Burýsek L, Houstek J. Beta-adrenergic stimulation of interleukin-1alpha and interleukin-6 expression in mouse brown adipocytes. FEBS Lett. 1997;411:83-86.
Whittle AJ, Carobbio S, Martins L, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149:871-885.
Cannon B, de Jong JMA, Fischer AW, Nedergaard J, Petrovic N. Human brown adipose tissue: classical brown rather than brite/beige? Exp Physiol. 2020;105:1191-1200.
Sanchez-Delgado G, Martinez-Tellez B, Olza J, et al. Activating brown adipose tissue through exercise (ACTIBATE) in young adults: rationale, design and methodology. Contemp Clin Trials. 2015;45:416-425.
Martinez-Tellez B, Sanchez-Delgado G, Acosta FM, et al. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat Commun. 2022;13:5259.
Martinez-Tellez B, Sanchez-Delgado G, Garcia-Rivero Y, et al. A new personalized cooling protocol to activate brown adipose tissue in young adults. Front Physiol. 2017;8:8.
Chen KY, Cypess AM, Laughlin MR, et al. Brown adipose reporting criteria in imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 2016;24:210-222.
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499-502.
Bedogni G, Bellentani S, Miglioli L, et al. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6:33.
Cereijo R, Quesada-López T, Gavaldà-Navarro A, et al. The chemokine CXCL14 is negatively associated with obesity and concomitant type-2 diabetes in humans. Int J Obes (Lond). 2021;45:706-710.
Garcia-Beltran C, Cereijo R, Plou C, et al. Posterior cervical brown fat and CXCL14 levels in the first year of life: sex differences and association with adiposity. J Clin Endocrinol Metab. 2022;107:e1148-e1158.
Jimenez-Pavon D, Corral-Perez J, Sánchez-Infantes D, Villarroya F, Ruiz JR, Martinez-Tellez B. Infrared thermography for estimating supraclavicular skin temperature and BAT activity in humans: a systematic review. Obesity (Silver Spring). 2019;27:1932-1949.
Acosta FM, Martinez-Tellez B, Sanchez-Delgado G, et al. Association of objectively measured physical activity with brown adipose tissue volume and activity in young adults. J Clin Endocrinol Metab. 2018;104:223-233.
Jang C, Jalapu S, Thuzar M, et al. Infrared thermography in the detection of brown adipose tissue in humans. Physiol Rep. 2014;2:1-7.
Sun L, Verma S, Michael N, et al. Brown adipose tissue: multimodality evaluation by PET, MRI, infrared thermography, and whole-body calorimetry (TACTICAL-II). Obesity (Silver Spring). 2019;27:1434-1442.
Chrysovergis K, Wang X, Kosak J, et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int J Obes (Lond). 2014;38:1555-1564.
Qing H, Desrouleaux R, Israni-Winger K, et al. Origin and function of stress-induced IL-6 in murine models. Cell. 2020;182:372-387.e14.
Villarroya F, Cereijo R, Villarroya J, Gavaldà-Navarro A, Giralt M. Toward an understanding of how immune cells control brown and beige adipobiology. Cell Metab. 2018;27:954-961.
Villarroya F, Giralt M. The beneficial effects of brown fat transplantation: further evidence of an endocrine role of brown adipose tissue. Endocrinology. 2015;156:2368-2370.
Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88:1379-1406.
Giralt M, Gavaldà-Navarro A, Villarroya F. Fibroblast growth factor-21, energy balance and obesity. Mol Cell Endocrinol. 2015;418:66-73.
Lee P, Brychta RJ, Linderman J, Smith S, Chen KY, Celi FS. Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J Clin Endocrinol Metab. 2013;98:98-102.
Lee P, Linderman JD, Smith S, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19:302-309.
Sun L, Yan J, Goh HJ, et al. Fibroblast growth factor-21, leptin, and adiponectin responses to acute cold-induced brown adipose tissue activation. J Clin Endocrinol Metab. 2020;105:e520-e531.
Hanssen MJW, Broeders E, Samms RJ, et al. Serum FGF21 levels are associated with brown adipose tissue activity in humans. Sci Rep. 2015;5:10275.
Ameka M, Markan KR, Morgan DA, et al. Liver derived FGF21 maintains core body temperature during acute cold exposure. Sci Rep. 2019;9:630.
Kim TH, Hong D-G, Yang YM. Hepatokines and non-alcoholic fatty liver disease: linking liver pathophysiology to metabolism. Biomedicine. 2021;9:1903.
Ruan C-C, Kong L-R, Chen X-H, et al. A2A receptor activation attenuates hypertensive cardiac remodeling via promoting brown adipose tissue-derived FGF21. Cell Metab. 2018;28:476-489.e5.
Urraza-Robledo AI, Giralt M, González-Galarza FF, et al. FGF21 serum levels are related to insulin resistance, metabolic changes and obesity in Mexican people living with HIV (PLWH). PloS One. 2021;16:e0252144.
Fisher FM, Chui PC, Antonellis PJ, et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 2010;59:2781-2789.
Garcia-Beltran C, Villarroya J, Plou C, et al. Bone morphogenetic protein-8B levels at birth and in the first year of life: relation to metabolic-endocrine variables and brown adipose tissue activity. Front Pediatr. 2022;10:869581.
Urisarri A, González-García I, Estévez-Salguero Á, et al. BMP8 and activated brown adipose tissue in human newborns. Nat Commun. 2021;12:5274.
Pellegrinelli V, Peirce VJ, Howard L, et al. Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nat Commun. 2018;9:4974.
Biswas K, Jolly MK, Ghosh A. First passage time properties of miRNA-mediated protein translation. J Theor Biol. 2021;529:110863.
Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444-E452.
Blondin DP, Labbé SM, Noll C, et al. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes. 2015;64:2388-2397.
Zhang L, Antonacci M, Burant A, et al. Absolute thermometry of human brown adipose tissue by magnetic resonance with laser polarized 129Xe. Commun Med. 2023;3:147.