The Changes, Aggregation Processes, and Driving Factors for Soil Fungal Communities during Tropical Forest Restoration.
Xishuangbanna
assembly processes
deterministic process
fungal assemblages
tropical forest restoration
Journal
Journal of fungi (Basel, Switzerland)
ISSN: 2309-608X
Titre abrégé: J Fungi (Basel)
Pays: Switzerland
ID NLM: 101671827
Informations de publication
Date de publication:
31 Dec 2023
31 Dec 2023
Historique:
received:
29
10
2023
revised:
10
12
2023
accepted:
29
12
2023
medline:
22
1
2024
pubmed:
22
1
2024
entrez:
22
1
2024
Statut:
epublish
Résumé
Soil fungal communities play crucial roles in mediating the functional associations between above- and belowground components during forest restoration. Forest restoration shapes the alterations in plant and soil environments, which exerts a crucial effect on soil fungal assemblages. However, the changes, assembly processes, and driving factors of soil fungi communities during tropical forest restoration are still uncertain. We used Illumina high-throughput sequencing to identify the changes of soil fungal communities across a tropical secondary forest succession chronosequence (i.e., 12-, 42-, and 53-yr stages) in Xishuangbanna. During forest restoration, the dominant taxa of soil fungi communities shifted from r- to K-strategists. The relative abundance of Ascomycota (r-strategists) decreased by 10.0% and that of Basidiomycota (K-strategists) increased by 4.9% at the 53-yr restoration stage compared with the 12-yr stage. From the 12-yr to 53-yr stage, the operational taxonomic unit (OTU), abundance-based coverage estimator (ACE), Chao1, and Shannon index of fungal communities declined by 14.5-57.4%. Although the stochastic processes were relatively important in determining fungal assemblages at the late stage, the fungal community assembly was dominated by deterministic processes rather than stochastic processes. The shifts in soil properties resulting from tropical forest restoration exerted significant effects on fungal composition and diversity. The positive effects of microbial biomass carbon, readily oxidizable carbon, and soil water content explained 11.5%, 9.6%, and 9.1% of the variations in fungal community composition, respectively. In contrast, microbial biomass carbon (40.0%), readily oxidizable carbon (14.0%), and total nitrogen (13.6%) negatively contributed to the variations in fungal community diversity. Our data suggested that the changes in fungal composition and diversity during tropical forest restoration were primarily mediated by the positive or negative impacts of soil carbon and nitrogen pools.
Identifiants
pubmed: 38248937
pii: jof10010027
doi: 10.3390/jof10010027
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Natural Science Foundation of China
ID : 32271722
Organisme : National Natural Science Foundation of China
ID : 32060281
Organisme : Yunnan Provincial Department of Education
ID : 2023J0449