Exosomal miR-4645-5p from hypoxic bone marrow mesenchymal stem cells facilitates diabetic wound healing by restoring keratinocyte autophagy.

AKT-mTORC1 signaling Bone marrow mesenchymal stem cell Diabetic wound repair Epidermal autophagy Exosomes Keratinocyte MAPKAPK2 Migration Proliferation Re-epithelization

Journal

Burns & trauma
ISSN: 2321-3868
Titre abrégé: Burns Trauma
Pays: England
ID NLM: 101651457

Informations de publication

Date de publication:
2024
Historique:
received: 26 02 2023
revised: 16 11 2023
accepted: 17 11 2023
medline: 22 1 2024
pubmed: 22 1 2024
entrez: 22 1 2024
Statut: epublish

Résumé

Refractory diabetic wounds are a common occurrence in patients with diabetes and epidermis-specific macroautophagy/autophagy impairment has been implicated in their pathogenesis. Therefore, identifying and developing treatment strategies capable of normalizing epidermis-specific macroautophagy/autophagy could facilitate diabetic wound healing. The study aims to investigate the potential of bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) from hypoxic conditions as a treatment to normalize epidermis-specific autophagy for diabetic wound healing. We compared the effects of bone marrow mesenchymal stem cell (BMSC)-sourced exosomes (BMSC-Exos) from hypoxic conditions to those of BMSC in normoxic conditions (noBMSC-Exos). Our studies involved morphometric assessment of the exosomes, identification of the microRNA (miRNA) responsible for the effects, evaluation of keratinocyte functions and examination of effects of the exosomes on several molecules involved in the autophagy pathway such as microtubule-associated protein 1 light chain 3 beta, beclin 1, sequestosome 1, autophagy-related 5 and autophagy-related 5. The experiments used human BMSCs from the American Type Culture Collection, an Hypoxia affected the release of exosomes from hypoxic BMSCs (hy-BMSCs) and influenced the size and morphology of the exosomes. Moreover, hyBMSC-Exo treatment markedly improved keratinocyte function, including keratinocyte autophagy, proliferation and migration. miRNA microarray and bioinformatics analysis showed that the target genes of the differentially expressed miRNAs were mainly enriched in 'autophagy' and 'process utilizing autophagic mechanism' in the 'biological process' category and miR-4645-5p as a major contributor to the pro-autophagy effect of hyBMSC-Exos. Moreover, mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2) was identified as a potential target of exosomal miR-4645-5p; this was confirmed using a dual luciferase assay. Exosomal miR-4645-5p mediates the inactivation of the MAPKAPK2-induced AKT kinase group (comprising AKT1, AKT2, and AKT3), which in turn suppresses AKT-mTORC1 signaling, thereby facilitating miR-4645-5p-mediated autophagy. Overall, the results of this study showed that hyBMSC-Exo-mediated transfer of miR-4645-5p inactivated MAPKAPK2-induced AKT-mTORC1 signaling in keratinocytes, which activated keratinocyte autophagy, proliferation and migration, resulting in diabetic wound healing in mice. Collectively, the findings could aid in the development of a novel therapeutic strategy for diabetic wounds.

Sections du résumé

Background UNASSIGNED
Refractory diabetic wounds are a common occurrence in patients with diabetes and epidermis-specific macroautophagy/autophagy impairment has been implicated in their pathogenesis. Therefore, identifying and developing treatment strategies capable of normalizing epidermis-specific macroautophagy/autophagy could facilitate diabetic wound healing. The study aims to investigate the potential of bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) from hypoxic conditions as a treatment to normalize epidermis-specific autophagy for diabetic wound healing.
Methods UNASSIGNED
We compared the effects of bone marrow mesenchymal stem cell (BMSC)-sourced exosomes (BMSC-Exos) from hypoxic conditions to those of BMSC in normoxic conditions (noBMSC-Exos). Our studies involved morphometric assessment of the exosomes, identification of the microRNA (miRNA) responsible for the effects, evaluation of keratinocyte functions and examination of effects of the exosomes on several molecules involved in the autophagy pathway such as microtubule-associated protein 1 light chain 3 beta, beclin 1, sequestosome 1, autophagy-related 5 and autophagy-related 5. The experiments used human BMSCs from the American Type Culture Collection, an
Results UNASSIGNED
Hypoxia affected the release of exosomes from hypoxic BMSCs (hy-BMSCs) and influenced the size and morphology of the exosomes. Moreover, hyBMSC-Exo treatment markedly improved keratinocyte function, including keratinocyte autophagy, proliferation and migration. miRNA microarray and bioinformatics analysis showed that the target genes of the differentially expressed miRNAs were mainly enriched in 'autophagy' and 'process utilizing autophagic mechanism' in the 'biological process' category and miR-4645-5p as a major contributor to the pro-autophagy effect of hyBMSC-Exos. Moreover, mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2) was identified as a potential target of exosomal miR-4645-5p; this was confirmed using a dual luciferase assay. Exosomal miR-4645-5p mediates the inactivation of the MAPKAPK2-induced AKT kinase group (comprising AKT1, AKT2, and AKT3), which in turn suppresses AKT-mTORC1 signaling, thereby facilitating miR-4645-5p-mediated autophagy.
Conclusions UNASSIGNED
Overall, the results of this study showed that hyBMSC-Exo-mediated transfer of miR-4645-5p inactivated MAPKAPK2-induced AKT-mTORC1 signaling in keratinocytes, which activated keratinocyte autophagy, proliferation and migration, resulting in diabetic wound healing in mice. Collectively, the findings could aid in the development of a novel therapeutic strategy for diabetic wounds.

Identifiants

pubmed: 38250706
doi: 10.1093/burnst/tkad058
pii: tkad058
pmc: PMC10796268
doi:

Types de publication

Journal Article

Langues

eng

Pagination

tkad058

Informations de copyright

© The Author(s) 2024. Published by Oxford University Press.

Déclaration de conflit d'intérêts

The authors declare no competing interests.

Auteurs

Yan Shi (Y)

Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yongwaizheng Road, Donghu District, Nanchang, Jiangxi, 330006, China.

Shang Wang (S)

Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, 400016, China.

Dewu Liu (D)

Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yongwaizheng Road, Donghu District, Nanchang, Jiangxi, 330006, China.

Zhengguang Wang (Z)

Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191 China.

Yihan Zhu (Y)

Department of Plastic and Aesthetic Surgery, Jiangxi Maternal and Child Health Hospital, Bayidadao Road, Donghu District, Nanchang 330006, China.

Jun Li (J)

HaploX Biotechnology Co., Ltd., Songpingshan Road, Nanshan District, Shenzhen 518057, Guangdong China.

Kui Xu (K)

Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine,Qianjiang Road, Yaohai District, Hefei 230038, Anhui, P. R. China.

Furong Li (F)

Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affifiliated Hospital, Southern University of Science and Technology), Dongmenbei Road, Luohu District, Shenzhen 518020, Guangdong, China.

Huicai Wen (H)

Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yongwaizheng Road, Donghu District, Nanchang, Jiangxi, 330006, China.

Ronghua Yang (R)

Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Panfu Road, Yuexiu District, Guangzhou, Guangdong, 510180, China.

Classifications MeSH