Effects of kinetic energy and firearm-to-target distance on fracture behavior in flat bones.
firearm-to-target distance
forensic anthropology
fractography
gunshot trauma
kinetic energy
trauma analysis
Journal
Journal of forensic sciences
ISSN: 1556-4029
Titre abrégé: J Forensic Sci
Pays: United States
ID NLM: 0375370
Informations de publication
Date de publication:
22 Jan 2024
22 Jan 2024
Historique:
revised:
02
01
2024
received:
04
09
2023
accepted:
02
01
2024
medline:
22
1
2024
pubmed:
22
1
2024
entrez:
22
1
2024
Statut:
aheadofprint
Résumé
This research implements a fractographic approach to investigate the relationships between kinetic energy, firearm-to-target distance, and various aspects of fracture behavior in gunshot trauma. Gunshot experiments were performed on pig scapulae (n = 30) using three firearms generating different muzzle (initial) kinetic energies, including a 0.32 pistol (103 J), 0.40 pistol (492 J), and 0.308 rifle (2275 J). Specimens were shot from two distances: 10 cm (n = 15) and 110 cm (n = 15). Features evaluated in fractographic analysis such as cone cracks, radiating cracks, crack branching points, and circumferential cracks could be easily identified and measured in flat bones and allowed for statistical comparison of crack propagation behavior under different impact conditions. Higher-energy bullets produced more radiating cracks, more crack branching points, and longer fracture lengths than lower-energy bullets. Distance had no significant effect on fracture morphology at the distances tested. That quantitative measures of crack propagation varied with energy affirms that kinetic energy transfer is important in determining the nature and extent of fracture in gunshot wounds and suggests it may be possible to infer relatively high- versus relatively low-energy transfer using these features. Ranges obtained with the three firearms exhibited considerable overlap, however, indicating that other variables such as bullet caliber, mass, and construction influence the efficiency of energy transfer from bullet to bone. Therefore, fracture morphology cannot be used to identify a specific firearm or to directly reconstruct the muzzle (initial) kinetic energy in forensic cases.
Identifiants
pubmed: 38251809
doi: 10.1111/1556-4029.15462
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024 American Academy of Forensic Sciences.
Références
Gramlich R. What the data says about gun deaths in the U.S. Pew Research Center. 2023. https://www.pewresearch.org/short-reads/2023/04/26/what-the-data-says-about-gun-deaths-in-the-u-s/#:~:text=Though%20they%20tend%20to%20get. Accessed 2 Jan 2024
Federal Bureau of Investigation. Crime data. Crime Data Explorer. 2016. https://cde.ucr.cjis.gov/LATEST/webapp/#/pages/explorer/crime/shr. Accessed 2 Jan 2024
Federal Bureau of Investigation. Crime data. Crime Data Explorer. 2021. https://cde.ucr.cjis.gov/LATEST/webapp/#/pages/explorer/crime/shr. Accessed 2 Jan 2024
Flieger A, Kölzer SC, Plenzig S, Heinbuch S, Kettner M, Ramsthaler F, et al. Bony injuries in homicide cases (1994-2014). A retrospective study. Int J Leg Med. 2016;130(5):1401-1408. https://doi.org/10.1007/s00414-016-1407-3
Collini F, Muccino E, Biehler-Gomez L, Cummaudo M, Gorio MCF, Cattaneo C. Correlation of soft tissue and skeletal injuries in cases of violent death: a retrospective study of autopsy cases for forensic anthropology. J Forensic Sci. 2023;68(1):59-65. https://doi.org/10.1111/1556-4029.1517
Baum GR, Baum JT, Hayward D, MacKay BJ. Gunshot wounds: ballistics, pathology, and treatment recommendations, with a focus on retained bullets. Orthop Res Rev. 2022;14:293-317. https://doi.org/10.2147/orr.s378278
Rhee PM, Moore EE, Joseph B, Tang A, Pandit V, Vercruysse G. Gunshot wounds: a review of ballistics, bullets, weapons, and myths. J Trauma Acute Care Surg. 2016;80(6):853-867. https://doi.org/10.1097/ta.0000000000001037
Berryman HE. A systematic approach to the interpretation of gunshot wound trauma to the cranium. Forensic Sci Int. 2019;301:306-317. https://doi.org/10.1016/j.forsciint.2019.05.019
Kani KK, Porrino JA, Chew FS. Low-velocity, civilian firearm extremity injuries-review and update for radiologists. Skeletal Radiol. 2022;51(6):1153-1171. https://doi.org/10.1007/s00256-021-03935-0
Kieser DC, Riddell R, Kieser JA, Theis J-C, Swain MV. Bone micro-fracture observations from direct impact of slow velocity projectiles. J Arch Military Med. 2014;2(1):e15614. https://doi.org/10.5812/jamm.15614
Huelke DF, Harger JH, Buege LJ, Dingman HG, Harger DR. An experimental study in bio-ballistics. J Biomech. 1968;1(2):97-105. https://doi.org/10.1016/0021-9290(68)90012-2
DiMaio VJM, Copeland AR, Besant-Matthews PE, Fletche LA, Jones A. Minimal velocities necessary for perforation of skin by air gun pellets and bullets. J Forensic Sci. 1982;27(4):894-898. https://doi.org/10.1520/JFS12207J
Huelke DF, Harger JH, Buege LJ, Dingman HG. An experimental study in bio-ballsitics: femoral fractures produced by projectiles-II: shaft impacts. J Biomech. 1968;1:313-321. https://doi.org/10.1016/0021-9290(68)90025-0
Harger JH, Huelke DF. Femoral fractures produced by projectiles-the effects of mass and diameter on target damage. J Biomech. 1970;3(5):487-493. https://doi.org/10.1016/0021-9290(70)90058-8
SWGANTH. Trauma analysis. National Institute of Standards and Technology. 2011. https://www.nist.gov/system/files/documents/2018/03/13/swganth_trauma.pdf. Accessed 1 Apr 2023.
Brown H, Cauchi DM, Holden JL, Wrobel H, Cordner S. Image analysis of gunshot residue on entry wounds. Forensic Sci Int. 1999;100(3):163-177. https://doi.org/10.1016/s0379-0738(98)00210-2
Cecchetto G, Giraudo C, Amagliani A, Viel G, Fais P, Cavarzeran F, et al. Estimation of the firing distance through micro-ct analysis of gunshot wounds. Int J Leg Med. 2011;125(2):245-251. https://doi.org/10.1007/s00414-010-0533-6
Merli D, Amadasi A, Mazzarelli D, Cappella A, Castoldi E, Ripa S, et al. Comparison of different swabs for sampling inorganic gunshot residue from gunshot wounds: applicability and reliability for the determination of firing distance. J Forensic Sci. 2018;64(2):558-564. https://doi.org/10.1111/1556-4029.13870
Walker JT. Bullet holes and chemical residues in shooting cases. J Crim Law Criminol (1931-1951). 1940;31(4):497-521. https://doi.org/10.2307/1137588
Zeichner A, Levin N. Casework experience of GSR detection in Israel, on samples from hands, hair, and clothing using an autosearch SEM/EDX system. J Forensic Sci. 1995;40(6):1082-1085. https://doi.org/10.1520/jfs13881j
Grela M, Panasiuk-Flak K, Listos P, Gryzińska M, Buszewicz G, Chagowski W, et al. Post-mortem analysis of gunshot wounds to the head and thorax in dogs by computed tomography, radiography and forensic necropsy. Med Sci Law. 2020;61(2):105-113. https://doi.org/10.1177/0025802420971176
Fragkouli K, Al Hakeem E, Bulut O, Simmons T. The effect of range and ammunition type on fracture patterns in porcine postcranial flat bones. J Forensic Leg Med. 2018;53:1-12. https://doi.org/10.1016/j.jflm.2017.10.004
Karger B, Billeb E, Koops E, Brinkmann B. Autopsy features relevant for discrimination between suicidal and homicidal gunshot injuries. Int J Leg Med. 2002;166:273-278. https://doi.org/10.1007/s00414-002-0325-8
de la Grandmaison G, Fermanian C, Aegerter P, Durigon M. Influence of ballistic and autopsy parameters on the manner of death in case of long firearms fatalities. Forensic Sci Int. 2008;177:207-213. https://doi.org/10.1016/j.forsciint.2008.01.002
Wong YS, Khairul O, Atiah AAG, Abdul Aziz I, Muhd Hilmi B, Noor Hazfalinda H, et al. Porcine model: differences in entry and exit wounds by semi-automatic pistol at different shooting distances. Malaysian J Forensic Sci. 2013;4(1):7-14.
Oura P, Junno A, Junno JA. Deep learning in forensic gunshot wound interpretation-a proof-of-concept study. Int J Leg Med. 2021;135:2101-2106. https://doi.org/10.1007/s00414-021-02566-3
Amadasi A, Mazzarelli D, Merlie D, Brandone A, Cattaneo C. Characteristics and frequency of chipping effects in near-contact gunshot wounds. J Forensic Sci. 2017;62(3):786-790. https://doi.org/10.1111/1556-4029.13312
Christensen AM, Hefner J, Smith M, Webb J, Bottrell M, Fenton T. Forensic fractography of bone. Forensic Anthropol. 2018;1(1):32-51. https://doi.org/10.5744/fa.2018.0004
Christensen AM, Isa MI, Smith M, Hefner J, Berryman HE, Saginor I, et al. A guide to forensic fractography of bone. Quantico, VA: Laboratory Division of the Federal Bureau of Investigation; 2022. https://zenodo.org/records/7101317. Accessed 2 Jan 2024
Christensen AM, Hatch GM. Forensic fractography of bone using computed tomography (CT) scans. J Forensic Radiol Imaging. 2019;18:37-39. https://doi.org/10.1016/j.jofri.2019.08.002
Isa MI, Fenton TW, Antonelli LS, Vaughan PE, Wei F. Investigating reverse butterfly fractures: an experimental approach and application of fractography. Forensic Sci Int. 2021;325:110899. https://doi.org/10.1016/j.forsciint.2021.110899
Lillard K, Christensen A. Fractography of long bones with high-velocity projectile trauma. Forensic Anthropol. 2020;3(3):1-4. https://doi.org/10.5744/fa.2020.1020
Love J, Christensen A. Application of bone fractography to a medical examiner sample: a case series. Forensic Anthropol. 2018;1(4):221-227. https://doi.org/10.5744/fa.2018.0024
Adcox D, Kendall A, Bartelink E, Berryman H. The application of forensic fractography to high-velocity projectile trauma in long bones: Relationships to velocity and caliber. In: Proceedings of the 75th Annual Scientific Conference of the American Academy of Forensic Sciences; 2023 Feb 13-18; Orlando, FL. Colorado Springs, CO: American Academy of Forensic Sciences; 2023.
Edwards D, Isa M. Investigation of gunshot homicides in the New Mexico Decedent Imaging Database. In: Proceedings of the 75th Annual Scientific Conference of the American Academy of Forensic Sciences; 2023 Feb 13-18; Orlando, FL. Colorado Springs, CO: American Academy of Forensic Sciences; 2023.
Hulse C, Stull KE, Knight LD. Determining common injury locations based on manner of death. In: Proceedings of the 70th Annual Scientific Meeting of the American Academy of Forensic Sciences; 2018 Feb 19-24; Seattle, WA. Colorado Springs, CO: American Academy of Forensic Sciences; 2018.
Christensen A, Rickman J, Berryman H. Forensic fractography of bone: fracture origins from impacts, and an improved understanding of the failure mechanism involved in beveling. Forensic Anthropol. 2021;4(1):57-69. https://doi.org/10.5744/fa.2020.0041
Rickman JM, Shackel J. A novel hypothesis for the formation of conoidal projectile wounds in Sandwich bones. Int J Leg Med. 2019;133(2):501-519. https://doi.org/10.1007/s00414-018-1946-x
Rickman JM, Shackel J. Crack propagation through sandwich bones due to low-velocity projectile impact. Int J Leg Med. 2019;133(5):1443-1459. https://doi.org/10.1007/s00414-019-02086-1
Berryman HE, Berryman JF, Saul TB. Bone trauma analysis in a forensic setting: a theoretical basis and a practical approach for evaluation. In: Boyd CC Jr, Boyd DC, editors. Forensic anthropology: theoretical framework and scientific basis. Hoboken, NJ: Wiley; 2018. p. 213-234.
Christensen AM, Rickman JM. Cone cracking in human bone: a CT case review series. Forensic Imaging. 2022;30:200510. https://doi.org/10.1016/j.fri.2022.200510
Quinn GD. NIST recommended practice guide: Fractography of ceramics and glasses. NIST Special Publication (SP). 3rd ed. Gaithersburg, MD: National Institute of Standards and Technology; 2020. 960-16. https://doi.org/10.6028/NIST.SP.960-16e3
Smith MJ, James S, Pover T, Ball N, Barnetson V, Foster B, et al. Fantastic plastic? Experimental evaluation of polyurethane bone substitutes as proxies for human bone in trauma simulations. Leg Med. 2015;17(5):427-435. https://doi.org/10.1016/j.legalmed.2015.06.007
Cohen H, Kugel C, May H, Medlej B, Stein D, Slon V, et al. The impact velocity and bone fracture pattern: forensic perspective. Forensic Sci Int. 2016;266:54-62. https://doi.org/10.1016/j.forsciint.2016.04.035
Fréchette VD. Failure analysis of brittle materials. Advances in ceramics, Vol 28. American Ceramic Society: Westerville, OH; 1990.
Hart GO. Fracture pattern interpretation in the skull: differentiating blunt force from ballistics trauma using concentric fractures. J Forensic Sci. 2005;50(6):1276-1281. https://doi.org/10.1520/JFS2004219
Langley NR. An anthropological analysis of gunshot wounds to the chest. J Forensic Sci. 2007;52(3):532-537. https://doi.org/10.1111/j.1556-4029.2007.00413.x
Kenney LM. Pig trauma models: A civilian perspective on AR-15 post-cranial skeletal trauma [Master's thesis]. Missoula, MT: University of Montana 2018. https://scholarworks.umt.edu/etd/11204. Accessed 2 Jan 2024.
Chapman KA. When the bullet hits the bone: Patterns in gunshot trauma to the infracranial skeleton [Master's thesis]. San Marcos, TX: Texas State University 2007. https://hdl.handle.net/10877/4084. Accessed 2 Jan 2024.
Collini F, Amadasi A, Mazzucchi A, Porta D, Regaazzola VL, Garofalo P, et al. The erratic behavior of lesions in burnt bone. J Forensic Sci. 2015;60(5):1290-1294. https://doi.org/10.1111/1556-4029.12794
Rickman JM, Painter J, Hazael R. A scanning electron microscopy study of projectile entry fractures in cortical bone; genesis and microarchitectural features. Int J Leg Med. 2022;136:629-648. https://doi.org/10.1007/s00414-021-02743-4
Wang M, Yuting L, Haoshun L, Zheng X, Zhiqiang L. Experiment and numerical simulation of damage progression in transparent sandwich structure under impact load. Materials. 2022;15:3809. https://doi.org/10.3390/ma15113809
Kirchner HP, Gruver RM. Localized impact damage in glass. Mater Sci Eng A. 1977;28:153-160. https://doi.org/10.1016/0025-5416(77)90099-4
Quinn GD, Swab JJ, Patel P. On radial, circumferential, and spiral cracks in fractured glass plates. Int J Appl Glass Sci. 2021;12:189-197. https://doi.org/10.6028/NIST.SP.960-16e2
Rickman JM, Smith MJ. Scanning electron microscope analysis of gunshot defects to bone: an underutilized source of information on ballistic trauma. J Forensic Sci. 2014;59(6):1473-1486. https://doi.org/10.1111/1556-4029.12522
Smith MJ, Brickley MB, Leach SL. Experimental evidence for lithic projectile injuries: improving identification of an under-recognized phenomenon. J Archaeol Sci. 2007;34:540-553. https://doi.org/10.1016/j.jas.2006.06.008
DiGangi E, Evangelou E, Somogyi T, Sheridan K. Initiation of a gunshot wound trauma atlas from human cranial bone, final summary overview. 2020. U.S Department of Justice Office of Justice Programs. https://www.ojp.gov/ncjrs/virtual-library/abstracts/initiation-gunshot-wound-trauma-atlas-human-cranial-bone-final. Accessed 2 Jan 2024.
Watson KE, Henwood BJ, Hewins K, Roberts A, Hazael R. Ballistic impact of hollow-point ammunition on porcine bone. J Forensic Sci. 2023;68(4):1121-1132. https://doi.org/10.1111/1556-4029.15273
Fenton TW, Birkby WH, Cornelison J. A fast and safe non-bleaching method for forensic skeletal preparation. J Forensic Sci. 2003;48(2):274-276. https://doi.org/10.1520/jfs2002034
Berryman HE, Gunther WM. Keyhole defect production in tubular bone. J Forensic Sci. 2000;45(2):483-487. https://doi.org/10.1520/JFD14712J
Denton JS, Segovia A, Filkins JA. Practical pathology of gunshot wounds. Arch Pathol Lab Med. 2006;130(9):1283-1289. https://doi.org/10.5858/2006-130-1283-PPOGW
Dixon DS. Keyhole lesions in gunshot wounds of the skull and direction of fire. J Forensic Sci. 1982;27(3):555-566.
Berryman HE, Lanfear AK, Shirley NR. The biomechanics of gunshot trauma to bone: research considerations within the present judicial climate. In: Dirkmaat DC, editor. A companion to forensic anthropology. Hoboken, NJ: Wiley; 2012. p. 390-399. https://doi.org/10.1002/9781118255377.ch18
Symes SA, L'Abbé EN, Chapman EN, Wolff I, Dirkmaat DC. Interpreting traumatic injury to bone in medicolegal investigations. In: Dirkmaat DC, editor. A companion to forensic anthropology. Hoboken, NJ: Wiley; 2012. p. 340-389. https://doi.org/10.1002/9781118255377.ch17
Taylor SC, Kranioti EF. Cranial trauma in handgun executions: experimental data using polyurethane proxies. Forensic Sci Int. 2018;282:157-167. https://doi.org/10.1016/j.forsciint.2017.11.032
Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1-10. https://doi.org/10.22203/ecm.v013a01