The hAT family hopper transposon exists as highly similar yet discontinuous elements in the Bactrocera tephritid fly genus.

Bactrocera carambolae Bactrocera dorsalis Bactrocera species complex hopper transposable element phylogenetic markers

Journal

Insect molecular biology
ISSN: 1365-2583
Titre abrégé: Insect Mol Biol
Pays: England
ID NLM: 9303579

Informations de publication

Date de publication:
22 Jan 2024
Historique:
received: 26 07 2023
accepted: 21 12 2023
medline: 22 1 2024
pubmed: 22 1 2024
entrez: 22 1 2024
Statut: aheadofprint

Résumé

The hAT family transposable element, hopper, was originally discovered as a defective 3120-bp full-length element in a wild-type strain of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), and subsequently a functional 3131-bp element, hopper

Identifiants

pubmed: 38251981
doi: 10.1111/imb.12891
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Institute of Food and Agriculture
ID : 2020-33522-3227

Informations de copyright

Published 2024. This article is a U.S. Government work and is in the public domain in the USA.

Références

Aketarawong, N., Isasawin, S., Sojikul, P. & Thanaphum, S. (2015) Gene flow and genetic structure of Bactrocera carambolae (Diptera, Tephritidae) among geographical differences and sister species, B. dorsalis, inferred from microsatellite DNA data. ZooKeys, 540, 239-272. Available from: https://doi.org/10.3897/zookeys.540.10058
Boykin, L.M., Schutze, M.K., Krosch, M.N., Chomič, A., Chapman, T.A., Englezou, A. et al. (2014) Multi-gene phylogenetic analysis of south-east Asian pest members of the Bactrocera dorsalis species complex (Diptera: Tephritidae) does not support current taxonomy. Journal of Applied Entomology, 138, 235-253. Available from: https://doi.org/10.1111/jen.12047
Calvi, B.R., Hong, T.J., Findley, S.D. & Gelbart, W.M. (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, activator, and Tam3. Cell, 66, 465-471. Available from: https://doi.org/10.1016/0092-8674(81)90010-6
Cary, L.C., Goebel, M., Corsaro, H.H., Wang, H.H., Rosen, E. & Fraser, M.J. (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 inserions within the FP-locus of nuclear polyhedrosis viruses. Virology, 161, 8-17.
Drew, R.A.I. & Hancock, D. (1994) The Bactrocera dorsalis complex of fruit flies (Diptera: Tephritidae: Dacinae) in Asia. Bulletin of Entomological Research, 84(2), 1-68.
Drosopoulou, E., Syllas, A., Goutakoli, P., Zisiadis, G.A., Konstantinou, T., Pangea, D. et al. (2019) Τhe complete mitochondrial genome of Bactrocera carambolae (Diptera: Tephritidae): genome description and phylogenetic implications. Insects, 10, 429. Available from: https://doi.org/10.3390/insects10120429
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution; International Journal of Organic Evolution, 39, 783-791. Available from: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Haag-Liautard, C., Dorris, M., Maside, X., Macaskill, S., Halligan, D.L., Houle, D. et al. (2007) Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature, 445, 82-85.
Handler, A.M. (2003) Isolation and analysis of a new hopper hAT transposon from the Bactrocera dorsalis white eye strain. Genetica, 118, 17-24. Available from: https://doi.org/10.1023/a:1022944120410
Handler, A.M. & Gomez, S.P. (1997) A new hobo, Ac, Tam3 transposable element, hopper, from Bactrocera dorsalis is distantly related to hobo and Ac. Gene, 185, 133-135. Available from: https://doi.org/10.1016/s0378-1119(96)00658-0
Handler, A.M. & McCombs, S.D. (2000) The piggyBac transposon mediates germ-line transformation in the oriental fruit fly and closely related elements exist in its genome. Insect Molecular Biology, 9, 605-612. Available from: https://doi.org/10.1046/j.1365-2583.2000.00227.x
Handler, A.M. & Schetelig, M.F. (2020) The hAT-family transposable element, hopper, from Bactrocera dorsalis is a functional vector for insect germline transformation. BMC Genetics, 21(Suppl 2), 137.
Handler, A.M., Zimowska, G.J. & Armstrong, K.F. (2008) Highly similar piggyBac elements in Bactrocera that share a common lineage with elements in noctuid moths. Insect Molecular Biology, 17, 387-393. Available from: https://doi.org/10.1111/j.1365-2583.2008.00813.x
Hasegawa, M., Kishino, H. & Yano, T. (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160-174.
Hayward, A., Ghazal, A., Andersson, G., Andersson, L. & Jern, P. (2013) ZBED evolution: repeated utilization of DNA transposons as regulators of diverse host functions. PLoS One, 8(3), e59940. Available from: https://doi.org/10.1371/journal.pone.0059940
Hee, A.K., Wee, S.L., Nishida, R., Ono, H., Hendrichs, J., Haymer, D.S. et al. (2015) Historical perspective on the synonymization of the four major pest species belonging to the Bactrocera dorsalis species complex (Diptera, Tephritidae). Zookeys, 540, 323-338.
Kempken, F. & Windhofer, F. (2001) The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma, 110, 1-9. Available from: https://doi.org/10.1007/s004120000118
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. Available from: https://doi.org/10.1093/molbev/msy096
Markljung, E., Jiang, L., Jaffe, J.D., Mikkelsen, T.S., Wallerman, O., Larhammar, M. et al. (2009) ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biology, 7(12), e1000256. Available from: https://doi.org/10.1371/journal.pbio.1000256
McCombs, S.D. & Saul, S.H. (1992) Linkage analysis of five new genetic markers of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Journal of Heredity, 83, 199-203.
Panaud, O. (2016) Horizontal transfers of transposable elements in eukaryotes: the flying genes. Comptes Rendus Biologies, 339(7-8), 296-299. Available from: https://doi.org/10.1016/j.crvi.2016.04.013
Peccoud, J., Loiseau, V., Cordaux, R. & Gilbert, C. (2017) Massive horizontal transfer of transposable elements in insects. Proceedings of the National Academy of Sciences of the United States of America, 114(18), 4721-4726. Available from: https://doi.org/10.1073/pnas.1621178114
Petersen, M., Armisén, D., Gibbs, R.A., Hering, L., Khila, A., Mayer, G. et al. (2019) Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Evolutionary Biology, 19, 11. Available from: https://doi.org/10.1186/s12862-018-1324-9
Purugganan, M.D. & Wessler, S.R. (1995) Transposon signatures: species-specific molecular markers that utilize a class of multiple-copy nuclear DNA. Molecular Ecology, 4, 265-269.
Rwomushana, I., Ekesi, S., Gordon, I. & Ogol, C. (2008) Host plants and host plant preference studies for Bactrocera invadens (Diptera: Tephritidae) in Kenya, a new invasive fruit fly species in Africa. Annals of the Entomological Society America, 101(2), 331-340.
San Jose, M., Doorenweerd, C., Leblanc, L., Barr, N., Geib, S. & Rubinoff, D. (2018) Tracking the origins of fly invasions; using mitochondrial haplotype diversity to identify potential source populations in two genetically intertwined fruit fly species (Bactrocera carambolae and Bactrocera dorsalis [Diptera: Tephritidae]). Journal of Economic Entomology, 111(6), 2914-2926.
Schaack, S., Gilbert, C. & Feschotte, C. (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends in Ecology and Evolution, 25(9), 537-546.
Schutze, M.K., Aketarawong, N., Amornsak, W., Armstrong, K.F., Augustinos, A.A., Barr, N. et al. (2015) Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data. Systematic Entomology, 40, 456-471.
Shi, X., Xiang, S., Cao, J., Zhu, H., Yang, B., He, Q. et al. (2019) Kelch-like proteins: physiological functions and relationships with diseases. Pharmacological Research, 148, 104404. Available from: https://doi.org/10.1016/j.phrs.2019.104404
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W. et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539. Available from: https://doi.org/10.1038/msb.2011.75
Stecher, G., Tamura, K. & Kumar, S. (2020) Molecular evolutionary genetics analysis (MEGA) for macOS. Molecular Biology and Evolution, 37(4), 1237-1239. Available from: https://doi.org/10.1093/molbev/msz312
Tamura, K. & Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 3, 512-526.
Valerio, F., Zadra, N., Rota-Stabelli, O. & Ometto, L. (2022) The impact of fast radiation on the phylogeny of Bactrocera fruit flies as revealed by multiple evolutionary models and mutation rate-calibrated clock. Insects, 13, 603.
van Sauers-Muller, A. (1991) An overview of the carambola fruit fly Bactrocera species (Diptera: Tephritidae), found recently in Suriname. Florida Entomologist, 74, 432-440.
Warren, W.D., Atkinson, P.W. & O'Brochta, D.A. (1994) The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genetical Research, 64(2), 87-97. Available from: https://doi.org/10.1017/s0016672300032699
White, I.M. & Elson-Harris, M.M. (1992) Fruit flies of economic significance: their identification and bionomics. Wallingford: CAB International.
Zhang, Y., Liu, S., Meyer, M.D., Liao, Z., Zhao, Y., Virgilio, M. et al. (2023) Genomes of the cosmopolitan fruit pest Bactrocera dorsalis (Diptera: Tephritidae) reveal its global invasion history and thermal adaptation. Journal of Advanced Research, 53, 61-74.
Zimowska, G.J. & Handler, A.M. (2006) Highly conserved piggyBac elements in noctuid species of Lepidoptera. Insect Biochemistry and Molecular Biology, 36(5), 421-428. Available from: https://doi.org/10.1016/j.ibmb.2006.03.001

Auteurs

Alfred M Handler (AM)

Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Florida, USA.

Richard B Furlong (RB)

Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Florida, USA.

Classifications MeSH