Incorporating surfactants into PCL microneedles for sustained release of a hydrophilic model drug.
Hydrophilic drug
Minoxidil
PCL/PEG blend
Polymeric microneedles
Surfactants
Sustained release
Journal
International journal of pharmaceutics
ISSN: 1873-3476
Titre abrégé: Int J Pharm
Pays: Netherlands
ID NLM: 7804127
Informations de publication
Date de publication:
20 Jan 2024
20 Jan 2024
Historique:
received:
07
11
2023
revised:
29
12
2023
accepted:
19
01
2024
medline:
23
1
2024
pubmed:
23
1
2024
entrez:
22
1
2024
Statut:
aheadofprint
Résumé
Polymeric microneedles (MNs) are widely used for sustained drug release due to their distinct advantages over other types of MNs. Poly-ε-caprolactone (PCL) stands out as a biodegradable and biocompatible hydrophobic polymer commonly employed in drug delivery applications. This study explores the impact of surfactants on the encapsulation and release rate of a model hydrophilic drug, minoxidil (MXD), from PCL MNs. Three nonionic surfactants, Tween 80, Span 60, and polyethylene glycol (PEG), were integrated into PCL MNs at varying concentrations. Compared to the other types of surfactants, PEG-containing PCL MNs exhibit enhanced insertion capabilities into a skin-simulant parafilm model and increased mechanical strength, suggesting facile penetration into the stratum corneum. Furthermore, MXD-PEG MNs show the highest encapsulation efficiency and are further characterized using FTIR, DSC and XRD. Their mechanical strength against different static forces was measured. The MNs exhibit a sustained release pattern over 20 days. Eventually, MXD-PEG MNs were subjected to penetration testing using chicken skin and required minimal insertion forces with no observed MN failure during experimentation even after compression with the maximum force applied (32 N per patch). Taken together, the present work demonstrates the feasibility of incorporating nonionic surfactants like PEG into the tips of hydrophobic PCL MNs for sustained delivery of a model hydrophilic drug. This formulation strategy can be used to improve patient compliance by allowing self-administration and achieving prolonged drug release.
Identifiants
pubmed: 38253267
pii: S0378-5173(24)00060-7
doi: 10.1016/j.ijpharm.2024.123826
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
123826Informations de copyright
Copyright © 2024. Published by Elsevier B.V.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.