The optimized priming effect of FGF-1 and FGF-2 enhances preadipocyte lineage commitment in human adipose-derived mesenchymal stem cells.

CD34 adipogenesis adipose-derived mesenchymal stem cell epidermal growth factor fibroblast growth factor lineage commitment preadipocyte preadipocyte factor 1

Journal

Genes to cells : devoted to molecular & cellular mechanisms
ISSN: 1365-2443
Titre abrégé: Genes Cells
Pays: England
ID NLM: 9607379

Informations de publication

Date de publication:
22 Jan 2024
Historique:
revised: 26 12 2023
received: 17 10 2023
accepted: 04 01 2024
medline: 23 1 2024
pubmed: 23 1 2024
entrez: 22 1 2024
Statut: aheadofprint

Résumé

The cell-assisted lipotransfer technique, integrating adipose-derived mesenchymal stem cells (ADMSCs), has transformed lipofilling, enhancing fat graft viability. However, the multipotent nature of ADMSCs poses challenges. To improve safety and graft vitality and to reduce unwanted lineage differentiation, this study refines the methodology by priming ADMSCs into preadipocytes-unipotent, self-renewing cells. We explored the impact of fibroblast growth factor-1 (FGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF), either alone or in combination, on primary human ADMSCs during the proliferative phase. FGF-2 emerged as a robust stimulator of cell proliferation, preserving stemness markers, especially when combined with EGF. Conversely, FGF-1, while not significantly affecting cell growth, influenced cell morphology, transitioning cells to a rounded shape with reduced CD34 expression. Furthermore, co-priming with FGF-1 and FGF-2 enhanced adipogenic potential, limiting osteogenic and chondrogenic tendencies, and possibly promoting preadipocyte commitment. These preadipocytes exhibited unique features: rounded morphology, reduced CD34, decreased preadipocyte factor 1 (Pref-1), and elevated C/EBPα and PPARγ, alongside sustained stemness markers (CD73, CD90, CD105). Mechanistically, FGF-1 and FGF-2 activated key adipogenic transcription factors-C/EBPα and PPARγ-while inhibiting GATA3 and Notch3, which are adipogenesis inhibitors. These findings hold the potential to advance innovative strategies for ADMSC-mediated lipofilling procedures.

Identifiants

pubmed: 38253356
doi: 10.1111/gtc.13095
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Nanken-Kyoten TMDU
Organisme : Siriraj Foundation
ID : D003917
Organisme : TMDU-MU JDP

Informations de copyright

© 2024 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

Références

Abdallah, B. M., Al-Shammary, A., Skagen, P., Abu Dawud, R., Adjaye, J., Aldahmash, A., & Kassem, M. (2015). CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells. Stem Cell Research, 15(3), 449-458. https://doi.org/10.1016/j.scr.2015.09.005
Abdallah, B. M., Jensen, C. H., Gutierrez, G., Leslie, R. G., Jensen, T. G., & Kassem, M. (2004). Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. Journal of Bone and Mineral Research, 19(5), 841-852. https://doi.org/10.1359/JBMR.040118
Armstrong, L., Hughes, O., Yung, S., Hyslop, L., Stewart, R., Wappler, I., Peters, H., Walter, T., Stojkovic, P., Evans, J., Stojkovic, M., & Lako, M. (2006). The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Human Molecular Genetics, 15(11), 1894-1913. https://doi.org/10.1093/hmg/ddl112
Ayanoglu, F. B., Elcin, A. E., & Elcin, Y. M. (2020). Evaluation of the stability of standard reference genes of adipose-derived mesenchymal stem cells during in vitro proliferation and differentiation. Molecular Biology Reports, 47(3), 2109-2122. https://doi.org/10.1007/s11033-020-05311-y
Baker, N. A., Muir, L. A., Lumeng, C. N., & O'Rourke, R. W. (2017). Differentiation and metabolic interrogation of human adipocytes. Methods in Molecular Biology, 1566, 61-76. https://doi.org/10.1007/978-1-4939-6820-6_7
Baladron, V., Ruiz-Hidalgo, M. J., Nueda, M. L., Diaz-Guerra, M. J., Garcia-Ramirez, J. J., Bonvini, E., Gubina, E., & Laborda, J. (2005). Dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Experimental Cell Research, 303(2), 343-359. https://doi.org/10.1016/j.yexcr.2004.10.001
Barry, F., Boynton, R. E., Liu, B., & Murphy, J. M. (2001). Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Experimental Cell Research, 268(2), 189-200. https://doi.org/10.1006/excr.2001.5278
Bispo, D. S. C., Michalkova, L., Correia, M., Jesus, C. S. H., Duarte, I. F., Goodfellow, B. J., Oliveira, M. B., Mano, J. F., & Gil, A. M. (2022). Endo- and exometabolome crosstalk in mesenchymal stem cells undergoing osteogenic differentiation. Cell, 11(8), 1257. https://doi.org/10.3390/cells11081257
Bourin, P., Bunnell, B. A., Casteilla, L., Dominici, M., Katz, A. J., March, K. L., Redl, H., Rubin, J. P., Yoshimura, K., & Gimble, J. M. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6), 641-648. https://doi.org/10.1016/j.jcyt.2013.02.006
Cawthorn, W. P., Scheller, E. L., & MacDougald, O. A. (2012). Adipose tissue stem cells meet preadipocyte commitment: Going back to the future. Journal of Lipid Research, 53(2), 227-246. https://doi.org/10.1194/jlr.R021089
Chen, M., Kim, S., Li, L., Chattopadhyay, S., Rando, T. A., & Feldman, B. J. (2023). Identification of an adipose tissue-resident pro-preadipocyte population. Cell Reports, 42(5), 112440. https://doi.org/10.1016/j.celrep.2023.112440
Choi, S. Y., Song, M. S., Ryu, P. D., Lam, A. T., Joo, S. W., & Lee, S. Y. (2015). Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/beta-catenin signaling pathway. International Journal of Nanomedicine, 10, 4383-4392. https://doi.org/10.2147/IJN.S78775
Dailey, L., Ambrosetti, D., Mansukhani, A., & Basilico, C. (2005). Mechanisms underlying differential responses to FGF signaling. Cytokine & Growth Factor Reviews, 16(2), 233-247. https://doi.org/10.1016/j.cytogfr.2005.01.007
Darlington, G. J., Ross, S. E., & MacDougald, O. A. (1998). The role of C/EBP genes in adipocyte differentiation. The Journal of Biological Chemistry, 273(46), 30057-30060. https://doi.org/10.1074/jbc.273.46.30057
Delay, E., Garson, S., Tousson, G., & Sinna, R. (2009). Fat injection to the breast: Technique, results, and indications based on 880 procedures over 10 years. Aesthetic Surgery Journal, 29(5), 360-376. https://doi.org/10.1016/j.asj.2009.08.010
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. https://doi.org/10.1080/14653240600855905
Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine & Growth Factor Reviews, 16(2), 139-149. https://doi.org/10.1016/j.cytogfr.2005.01.001
Gonzalez Suarez, N., Rodriguez Torres, S., Ouanouki, A., El Cheikh-Hussein, L., & Annabi, B. (2021). EGCG inhibits adipose-derived mesenchymal stem cells differentiation into adipocytes and prevents a STAT3-mediated paracrine oncogenic control of triple-negative breast cancer cell invasive phenotype. Molecules, 26(6), 1506. https://doi.org/10.3390/molecules26061506
Greber, B., Lehrach, H., & Adjaye, J. (2007). Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells, 25(2), 455-464. https://doi.org/10.1634/stemcells.2006-0476
Gregoire, F. M. (2001). Adipocyte differentiation: from fibroblast to endocrine cell. Experimental Biology and Medicine (Maywood, N.J.), 226(11), 997-1002. https://doi.org/10.1177/153537020122601106
Gregoire, F. M., Smas, C. M., & Sul, H. S. (1998). Understanding adipocyte differentiation. Physiological Reviews, 78(3), 783-809. https://doi.org/10.1152/physrev.1998.78.3.783
Gutiérrez, M. L., Guevara, J., & Barrera, L. A. (2012). Semi-automatic grading system in histologic and immunohistochemistry analysis to evaluate in vitro chondrogenesis. Universitas Scientiarum, 17(12), 167-178. https://doi.org/10.11144/javeriana.SC17-2.sags
Hauner, H., Rohrig, K., & Petruschke, T. (1995). Effects of epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) on human adipocyte development and function. European Journal of Clinical Investigation, 25(2), 90-96. https://doi.org/10.1111/j.1365-2362.1995.tb01532.x
Hebert, T. L., Wu, X., Yu, G., Goh, B. C., Halvorsen, Y. D., Wang, Z., Moro, C., & Gimble, J. M. (2009). Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis. Journal of Tissue Engineering and Regenerative Medicine, 3(7), 553-561. https://doi.org/10.1002/term.198
Hudak, C. S., & Sul, H. S. (2013). Pref-1, a gatekeeper of adipogenesis. Front Endocrinol (Lausanne), 4, 79. https://doi.org/10.3389/fendo.2013.00079
Hutley, L., Shurety, W., Newell, F., McGeary, R., Pelton, N., Grant, J., Herington, A., Cameron, D., Whitehead, J., & Prins, J. (2004). Fibroblast growth factor 1: A key regulator of human adipogenesis. Diabetes, 53(12), 3097-3106. https://doi.org/10.2337/diabetes.53.12.3097
Hutley, L. J., Herington, A. C., Shurety, W., Cheung, C., Vesey, D. A., Cameron, D. P., & Prins, J. B. (2001). Human adipose tissue endothelial cells promote preadipocyte proliferation. American Journal of Physiology. Endocrinology and Metabolism, 281(5), E1037-E1044. https://doi.org/10.1152/ajpendo.2001.281.5.E1037
Hwang, S. M., See, C. J., Choi, J., Kim, S. Y., Choi, Q., Kim, J. A., Kwon, J., Park, S. N., Im, K., Oh, I.-H., & Lee, D. S. (2013). The application of an in situ karyotyping technique for mesenchymal stromal cells: A validation and comparison study with classical G-banding. Experimental & Molecular Medicine, 45(12), e68. https://doi.org/10.1038/emm.2013.133
Imboden, S., Liu, X., Lee, B. S., Payne, M. C., Hsieh, C. J., & Lin, N. Y. C. (2021). Investigating heterogeneities of live mesenchymal stromal cells using AI-based label-free imaging. Scientific Reports, 11(1), 6728. https://doi.org/10.1038/s41598-021-85905-z
Ito, T., Sawada, R., Fujiwara, Y., & Tsuchiya, T. (2008). FGF-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of TGF-beta signaling. Cytotechnology, 56(1), 1-7. https://doi.org/10.1007/s10616-007-9092-1
James, D., Levine, A. J., Besser, D., & Hemmati-Brivanlou, A. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132(6), 1273-1282. https://doi.org/10.1242/dev.01706
Jarriault, S., Brou, C., Logeat, F., Schroeter, E. H., Kopan, R., & Israel, A. (1995). Signalling downstream of activated mammalian notch. Nature, 377(6547), 355-358. https://doi.org/10.1038/377355a0
Johal, K. S., Lees, V. C., & Reid, A. J. (2015). Adipose-derived stem cells: Selecting for translational success. Regenerative Medicine, 10(1), 79-96. https://doi.org/10.2217/rme.14.72
Jonker, J. W., Suh, J. M., Atkins, A. R., Ahmadian, M., Li, P., Whyte, J., He, M., Juguilon, H., Yin, Y.-Q., Phillips, C. T., Yu, R. T., Olefsky, J. M., Henry, R. R., Downes, M., & Evans, R. M. (2012). A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature, 485(7398), 391-394. https://doi.org/10.1038/nature10998
Kakudo, N., Shimotsuma, A., & Kusumoto, K. (2007). Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells. Biochemical and Biophysical Research Communications, 359(2), 239-244. https://doi.org/10.1016/j.bbrc.2007.05.070
Kim, S., Ahn, C., Bong, N., Choe, S., & Lee, D. K. (2015). Biphasic effects of FGF2 on adipogenesis. PLoS One, 10(3), e0120073. https://doi.org/10.1371/journal.pone.0120073
Koellensperger, E., Bonnert, L. C., Zoernig, I., Marme, F., Sandmann, S., Germann, G., Gramley, F., & Leimer, U. (2017). The impact of human adipose tissue-derived stem cells on breast cancer cells: Implications for cell-assisted lipotransfers in breast reconstruction. Stem Cell Research & Therapy, 8(1), 121. https://doi.org/10.1186/s13287-017-0579-1
Kolle, S. F., Fischer-Nielsen, A., Mathiasen, A. B., Elberg, J. J., Oliveri, R. S., Glovinski, P. V., Kastrup, J., Kirchhoff, M., Rasmussen, B. S., Talman, M.-L., Thomsen, C., Dickmeiss, E., & Drzewiecki, K. T. (2013). Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: A randomised placebo-controlled trial. Lancet, 382(9898), 1113-1120. https://doi.org/10.1016/S0140-6736(13)61410-5
Korzynska, A., & Zychowicz, M. (2008). A method of estimation of the cell doubling time on basis of the cell culture monitoring data. Biocybernetics and Biomedical Engineering, 28(4), 75-82.
Kouhara, H., Hadari, Y. R., Spivak-Kroizman, T., Schilling, J., Bar-Sagi, D., Lax, I., & Schlessinger, J. (1997). A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell, 89(5), 693-702. https://doi.org/10.1016/s0092-8674(00)80252-4
Krause, D. S., Fackler, M. J., Civin, C. I., & May, W. S. (1996). CD34: Structure, biology, and clinical utility. Blood, 87(1), 1-13.
Kurachi, H., Adachi, H., Ohtsuka, S., Morishige, K., Amemiya, K., Keno, Y., Shimomura, I., Tokunaga, K., Miyake, A., & Matsuzawa, Y. (1993). Involvement of epidermal growth factor in inducing obesity in ovariectomized mice. The American Journal of Physiology, 265(2 Pt 1), E323-E331. https://doi.org/10.1152/ajpendo.1993.265.2.E323
Lai, P. Y., Tsai, C. B., & Tseng, M. J. (2013). Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes. Biochemical and Biophysical Research Communications, 430(3), 1132-1139. https://doi.org/10.1016/j.bbrc.2012.12.024
Li, J., Wu, Z., Zhao, L., Liu, Y., Su, Y., Gong, X., Liu, F., & Zhang, L. (2023). The heterogeneity of mesenchymal stem cells: An important issue to be addressed in cell therapy. Stem Cell Research & Therapy, 14(1), 381. https://doi.org/10.1186/s13287-023-03587-y
Li, K., Wu, Y., Yang, H., Hong, P., Fang, X., & Hu, Y. (2019). H19/miR-30a/C8orf4 axis modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. Journal of Cellular Physiology, 234(11), 20925-20934. https://doi.org/10.1002/jcp.28697
Li, Q., Xia, J., Yao, Y., Gong, D. W., Shi, H., & Zhou, Q. (2013). Sulforaphane inhibits mammary adipogenesis by targeting adipose mesenchymal stem cells. Breast Cancer Research and Treatment, 141(2), 317-324. https://doi.org/10.1007/s10549-013-2672-1
Lin, C. S., Ning, H., Lin, G., & Lue, T. F. (2012). Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy, 14(10), 1159-1163. https://doi.org/10.3109/14653249.2012.729817
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
Missana, M. C., Laurent, I., Barreau, L., & Balleyguier, C. (2007). Autologous fat transfer in reconstructive breast surgery: Indications, technique and results. European Journal of Surgical Oncology, 33(6), 685-690. https://doi.org/10.1016/j.ejso.2006.12.002
Mitchell, J. B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z. E., Kloster, A., Di Halvorsen, Y., Storms, R. W., Goh, B., Kilroy, G., Wu, X., & Gimble, J. M. (2006). Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 24(2), 376-385. https://doi.org/10.1634/stemcells.2005-0234
Mossahebi-Mohammadi, M., Quan, M., Zhang, J. S., & Li, X. (2020). FGF signaling pathway: A key regulator of stem cell pluripotency. Frontiers in Cell and Development Biology, 8, 79. https://doi.org/10.3389/fcell.2020.00079
Muller, A. M., Hermanns, M. I., Skrzynski, C., Nesslinger, M., Muller, K. M., & Kirkpatrick, C. J. (2002). Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro. Experimental and Molecular Pathology, 72(3), 221-229. https://doi.org/10.1006/exmp.2002.2424
Neville, M. J., Collins, J. M., Gloyn, A. L., McCarthy, M. I., & Karpe, F. (2011). Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring), 19(4), 888-892. https://doi.org/10.1038/oby.2010.257
Newell, F. S., Su, H., Tornqvist, H., Whitehead, J. P., Prins, J. B., & Hutley, L. J. (2006). Characterization of the transcriptional and functional effects of fibroblast growth factor-1 on human preadipocyte differentiation. The FASEB Journal, 20(14), 2615-2617. https://doi.org/10.1096/fj.05-5710fje
Ntambi, J. M., & Young-Cheul, K. (2000). Adipocyte differentiation and gene expression. The Journal of Nutrition, 130(12), 3122S-3126S. https://doi.org/10.1093/jn/130.12.3122S
Nueda, M. L., Baladron, V., Sanchez-Solana, B., Ballesteros, M. A., & Laborda, J. (2007). The EGF-like protein dlk1 inhibits notch signaling and potentiates adipogenesis of mesenchymal cells. Journal of Molecular Biology, 367(5), 1281-1293. https://doi.org/10.1016/j.jmb.2006.10.043
Oedayrajsingh-Varma, M. J., van Ham, S. M., Knippenberg, M., Helder, M. N., Klein-Nulend, J., Schouten, T. E., Ritt, M. J. P. F., & van Milligen, F. J. (2006). Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 8(2), 166-177. https://doi.org/10.1080/14653240600621125
Osathanon, T., Subbalekha, K., Sastravaha, P., & Pavasant, P. (2012). Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue. Cell Biology International, 36(12), 1161-1170. https://doi.org/10.1042/CBI20120288
Pulagam, S. R., Poulton, T., & Mamounas, E. P. (2006). Long-term clinical and radiologic results with autologous fat transplantation for breast augmentation: Case reports and review of the literature. The Breast Journal, 12(1), 63-65. https://doi.org/10.1111/j.1075-122X.2006.00188.x
Rennerfeldt, D. A., Raminhos, J. S., Leff, S. M., Manning, P., & Van Vliet, K. J. (2019). Emergent heterogeneity in putative mesenchymal stem cell colonies: Single-cell time lapsed analysis. PLoS One, 14(4), e0213452. https://doi.org/10.1371/journal.pone.0213452
Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews. Molecular Cell Biology, 7(12), 885-896. https://doi.org/10.1038/nrm2066
Ross, D. A., Rao, P. K., & Kadesch, T. (2004). Dual roles for the notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes. Molecular and Cellular Biology, 24(8), 3505-3513. https://doi.org/10.1128/MCB.24.8.3505-3513.2004
Russell, K. C., Phinney, D. G., Lacey, M. R., Barrilleaux, B. L., Meyertholen, K. E., & O'Connor, K. C. (2010). In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells, 28(4), 788-798. https://doi.org/10.1002/stem.312
Sanchez-Solana, B., Nueda, M. L., Ruvira, M. D., Ruiz-Hidalgo, M. J., Monsalve, E. M., Rivero, S., García-Ramírez, J. J., Díaz-Guerra, M. J. M., Baladrón, V., & Laborda, J. (2011). The EGF-like proteins DLK1 and DLK2 function as inhibitory non-canonical ligands of NOTCH1 receptor that modulate each other's activities. Biochimica et Biophysica Acta, 1813(6), 1153-1164. https://doi.org/10.1016/j.bbamcr.2011.03.004
Sandel, D. A., Liu, M., Ogbonnaya, N., & Newman, J. J. (2018). Notch3 is involved in adipogenesis of human adipose-derived stromal/stem cells. Biochimie, 150, 31-36. https://doi.org/10.1016/j.biochi.2018.04.020
Sarugaser, R., Hanoun, L., Keating, A., Stanford, W. L., & Davies, J. E. (2009). Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS One, 4(8), e6498. https://doi.org/10.1371/journal.pone.0006498
Smith, J. R., Pochampally, R., Perry, A., Hsu, S. C., & Prockop, D. J. (2004). Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells, 22(5), 823-831. https://doi.org/10.1634/stemcells.22-5-823
Spiegelman, B. M., & Farmer, S. R. (1982). Decreases in tubulin and Actin gene expression prior to morphological differentiation of 3T3 adipocytes. Cell, 29(1), 53-60. https://doi.org/10.1016/0092-8674(82)90089-7
Suga, H., Matsumoto, D., Eto, H., Inoue, K., Aoi, N., Kato, H., Araki, J., & Yoshimura, K. (2009). Functional implications of CD34 expression in human adipose-derived stem/progenitor cells. Stem Cells and Development, 18(8), 1201-1210. https://doi.org/10.1089/scd.2009.0003
Sun, Y., Xiong, X., & Wang, X. (2020). The miR-590-3p/VEGFA axis modulates secretion of VEGFA from adipose-derived stem cells, which acts as a paracrine regulator of human dermal microvascular endothelial cell angiogenesis. Human Cell, 33(3), 479-489. https://doi.org/10.1007/s13577-019-00315-8
Tchkonia, T., Giorgadze, N., Pirtskhalava, T., Tchoukalova, Y., Karagiannides, I., Forse, R. A., DePonte, M., Stevenson, M., Guo, W., Han, J., Waloga, G., Lash, T. L., Jensen, M. D., & Kirkland, J. L. (2002). Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 282(5), R1286-R1296. https://doi.org/10.1152/ajpregu.00653.2001
Tchkonia, T., Lenburg, M., Thomou, T., Giorgadze, N., Frampton, G., Pirtskhalava, T., Cartwright, A., Cartwright, M., Flanagan, J., Karagiannides, I., Gerry, N., Forse, R. A., Tchoukalova, Y., Jensen, M. D., Pothoulakis, C., & Kirkland, J. L. (2007). Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. American Journal of Physiology. Endocrinology and Metabolism, 292(1), E298-E307. https://doi.org/10.1152/ajpendo.00202.2006
Tchoukalova, Y. D., Sarr, M. G., & Jensen, M. D. (2004). Measuring committed preadipocytes in human adipose tissue from severely obese patients by using adipocyte fatty acid binding protein. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287(5), R1132-R1140. https://doi.org/10.1152/ajpregu.00337.2004
Thitilertdecha, P., Lohsiriwat, V., Poungpairoj, P., Tantithavorn, V., & Onlamoon, N. (2020). Extensive characterization of mesenchymal stem cell marker expression on freshly isolated and in vitro expanded human adipose-derived stem cells from breast cancer patients. Stem Cells International, 2020, 8237197. https://doi.org/10.1155/2020/8237197
Tomlinson, J. J., Boudreau, A., Wu, D., Atlas, E., & Hache, R. J. (2006). Modulation of early human preadipocyte differentiation by glucocorticoids. Endocrinology, 147(11), 5284-5293. https://doi.org/10.1210/en.2006-0267
Tong, Q., Dalgin, G., Xu, H., Ting, C. N., Leiden, J. M., & Hotamisligil, G. S. (2000). Function of GATA transcription factors in preadipocyte-adipocyte transition. Science, 290(5489), 134-138. https://doi.org/10.1126/science.290.5489.134
Tong, Q., Tsai, J., Tan, G., Dalgin, G., & Hotamisligil, G. S. (2005). Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Molecular and Cellular Biology, 25(2), 706-715. https://doi.org/10.1128/MCB.25.2.706-715.2005
Uysal, A. C., Mizuno, H., Tobita, M., Ogawa, R., & Hyakusoku, H. (2009). The effect of adipose-derived stem cells on ischemia-reperfusion injury: Immunohistochemical and ultrastructural evaluation. Plastic and Reconstructive Surgery, 124(3), 804-815. https://doi.org/10.1097/PRS.0b013e3181b17bb4
Vallier, L., Alexander, M., & Pedersen, R. A. (2005). Activin/nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. Journal of Cell Science, 118(Pt 19), 4495-4509. https://doi.org/10.1242/jcs.02553
Vishnubalaji, R., Al-Nbaheen, M., Kadalmani, B., Aldahmash, A., & Ramesh, T. (2012). Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell and Tissue Research, 347(2), 419-427. https://doi.org/10.1007/s00441-011-1306-3
Wabitsch, M., Brenner, R. E., Melzner, I., Braun, M., Moller, P., Heinze, E., Debatin, K. M., & Hauner, H. (2001). Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. International Journal of Obesity and Related Metabolic Disorders, 25(1), 8-15. https://doi.org/10.1038/sj.ijo.0801520
Wang, H., Jiang, Y., Meng, H., Zhu, Q., Dai, Q., & Qi, K. (2010). Sonographic identification of complications of cosmetic augmentation with autologous fat obtained by liposuction. Annals of Plastic Surgery, 64(4), 385-389. https://doi.org/10.1097/SAP.0b013e3181b14265
Widberg, C. H., Newell, F. S., Bachmann, A. W., Ramnoruth, S. N., Spelta, M. C., Whitehead, J. P., Hutley, L. J., & Prins, J. B. (2009). Fibroblast growth factor receptor 1 is a key regulator of early adipogenic events in human preadipocytes. American Journal of Physiology. Endocrinology and Metabolism, 296(1), E121-E131. https://doi.org/10.1152/ajpendo.90602.2008
Yang, H., Guo, Y., Wang, D., Yang, X., & Ha, C. (2018). Effect of TAK1 on osteogenic differentiation of mesenchymal stem cells by regulating BMP-2 via Wnt/beta-catenin and MAPK pathway. Organogenesis, 14(1), 36-45. https://doi.org/10.1080/15476278.2018.1455010
Yin, D., Wells, J. A., Clinton, J., & Zou, C. (2010). Comparative analysis of cell proliferation, immunosuppressive action, and multi-lineage differentiation of immortalized MSC and MSC from bone marrow, adipose tissue, and umbilical cord blood. In Proceedings of the International Society for Stem Cell Research Conference, Toronto, Canada, 15-18 June 2010. https://www.atcc.org/~/media/7c656fd061ef4460a4363b148d3f8d47.ashx
Yoshimura, K., Sato, K., Aoi, N., Kurita, M., Hirohi, T., & Harii, K. (2008). Cell-assisted lipotransfer for cosmetic breast augmentation: Supportive use of adipose-derived stem/stromal cells. Aesthetic Plastic Surgery, 32(1), 48-55; discussion 56-47. https://doi.org/10.1007/s00266-007-9019-4
Yoshimura, K., Sato, K., Aoi, N., Kurita, M., Hirohi, T., & Harii, K. (2020). Cell-assisted Lipotransfer for cosmetic breast augmentation: Supportive use of adipose-derived stem/stromal cells. Aesthetic Plastic Surgery, 44(4), 1258-1265. https://doi.org/10.1007/s00266-020-01819-7
Zaragosi, L. E., Ailhaud, G., & Dani, C. (2006). Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells, 24(11), 2412-2419. https://doi.org/10.1634/stemcells.2006-0006
Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., & Cui, Z. (2008). Adipose-derived stem cell: A better stem cell than BMSC. Cell Biochemistry and Function, 26(6), 664-675. https://doi.org/10.1002/cbf.1488

Auteurs

Tanakorn Tarapongpun (T)

Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand.
Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.

Nattawat Onlamoon (N)

Department of Research, Faculty of Medicine Siriraj Hospital, Siriraj Research Group in Immunobiology and Therapeutic Sciences, Mahidol University, Bangkok, Thailand.

Kouichi Tabu (K)

Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.

Suebwong Chuthapisith (S)

Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand.

Tetsuya Taga (T)

Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.

Classifications MeSH