Molecular dynamics simulations of displacement cascades in LiAlO


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 Jan 2024
Historique:
received: 13 06 2023
accepted: 02 01 2024
medline: 23 1 2024
pubmed: 23 1 2024
entrez: 22 1 2024
Statut: epublish

Résumé

Molecular dynamics was employed to investigate the radiation damage due to collision cascades in LiAlO

Identifiants

pubmed: 38253632
doi: 10.1038/s41598-024-51222-4
pii: 10.1038/s41598-024-51222-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1897

Informations de copyright

© 2024. © Battelle Memorial Institute 2024.

Références

Jiang, W. et al. Microstructural evolution and precipitation in γ-LiAlO
doi: 10.1063/5.0089865
Senor, D. J. Recommendations for Tritium Science and Technology Research and Development in Support of the Tritium Readiness Campaign, TTP-7-084. (Pacific Northwest National Lab.(PNNL), Richland, WA (United States), (2013).
Auvray-Gely, M., Dunlop, A. & Hobbs, L. Irradiation damage in lithium ceramics. J. Nucl. Mater. 133, 230–233 (1985).
doi: 10.1016/0022-3115(85)90140-0
Hetaba, W., Mogilatenko, A. & Neumann, W. Electron beam-induced oxygen desorption in γ-LiAlO
doi: 10.1016/j.micron.2010.03.004
Dienes, G. J. Radiation effects in solids. Ann. Rev. Nucl. Sci. 2, 187–220 (1953).
doi: 10.1146/annurev.ns.02.120153.001155
Ishida, T. et al. Study of the radiation damage effect on Titanium metastable beta alloy by high intensity proton beam. Nucl. Mater. Energy 15, 169–174 (2018).
doi: 10.1016/j.nme.2018.04.006
Ishida, T. et al. Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: Radiation-induced omega phase transformation in Ti–6Al–4V. J. Nucl. Mater. 541, 152413 (2020).
doi: 10.1016/j.jnucmat.2020.152413
Roy, A., Senor, D. J., Edwards, D. J., Casella, A. M. & Devanathan, R. Insights into radiation resistance of titanium alloys from displacement cascade simulations. J. Nucl. Mater. 586, 154695 (2023).
doi: 10.1016/j.jnucmat.2023.154695
Roy, A., Senor, D. J., Casella, A. M. & Devanathan, R. Molecular dynamics simulations of radiation response of LiAlO
doi: 10.1016/j.jnucmat.2023.154280
Setyawan, W., Senor, D. J. & Devanathan, R. Insights on amorphization of lithium aluminate from atomistic simulation. J. Phys. Chem. C 121, 7635–7642 (2017).
doi: 10.1021/acs.jpcc.6b12562
Nakazawa, T., Grismanovs, V., Yamaki, D., Katano, Y. & Aruga, T. Disordering in Li
doi: 10.1016/S0168-583X(03)00712-2
Sahoo, D. R., Chaudhuri, P. & Swaminathan, N. A molecular dynamics study of displacement cascades and radiation induced amorphization in Li
doi: 10.1016/j.commatsci.2021.110783
Kobayashi, M., Toda, K., Oya, Y. & Okuno, K. Dependency of irradiation damage density on tritium migration behaviors in Li
doi: 10.1016/j.jnucmat.2013.12.001
Kobayashi, M., Oya, Y., Munakata, K. & Okuno, K. Developing a tritium release model for Li
doi: 10.1016/j.jnucmat.2014.11.047
Oyaidzu, M. et al. Correlation between annihilation of radiation defects and tritium release in Li
doi: 10.1016/j.jnucmat.2004.04.223
Tsuchihira, H., Oda, T. & Tanaka, S. Molecular-dynamics simulation of threshold displacement energies in lithium aluminate. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269, 1707–1711 (2011).
doi: 10.1016/j.nimb.2010.11.004
Setyawan, W., Senor, D. J. & Devanathan, R. Role of interfaces in damage process of irradiated lithium aluminate nanocrystals. J. Am. Ceramic Soc. 102, 1982–1993 (2019).
doi: 10.1111/jace.16051
Devaraj, A. et al. Neutron irradiation induced changes in isotopic abundance of 6Li and 3D nanoscale distribution of tritium in LiAlO
doi: 10.1016/j.matchar.2021.111095
Wiedemann, D. et al. Unravelling ultraslow lithium-ion diffusion in γ-LiAlO
doi: 10.1021/acs.chemmater.5b04608
Jacobs, J.-P., San Miguel, M. A., Alvarez, L. J. & Giral, P. B. Lithium diffusion in γ-LiAlO
doi: 10.1016/S0022-3115(96)00435-7
Tsuchihira, H., Oda, T. & Tanaka, S. Derivation of potential model for LiAlO
doi: 10.1016/j.jnucmat.2009.10.041
Kuganathan, N., Dark, J., Sgourou, E., Panayiotatos, Y. & Chroneos, A. Atomistic simulations of the defect chemistry and self-diffusion of Li-ion in LiAlO
doi: 10.3390/en12152895
Kuganathan, N. & Islam, M. Li
doi: 10.1021/cm902163k
Sauer, J., Schröder, K.-P. & Termath, V. Comparing the acidities of microporous aluminosilicate and silico-aluminophosphate catalysts: A combined quantum mechanics-interatomic potential function study. Collect. Czechoslov. Chem. Commun. 63, 1394–1408 (1998).
doi: 10.1135/cccc19981394
Olson, C. L., Nelson, J. & Islam, M. S. Defect chemistry, surface structures, and lithium insertion in anatase TiO
pubmed: 16706458 doi: 10.1021/jp057261l
Ziegler, J. F. & Biersack, J. P. Treatise on Heavy-Ion Science 93–129 (Springer, Berlin, 1985).
doi: 10.1007/978-1-4615-8103-1_3
Cooper, M., Rushton, M. & Grimes, R. A many-body potential approach to modelling the thermomechanical properties of actinide oxides. J. Phys. Condens. Matter 26, 105401 (2014).
pubmed: 24553129 doi: 10.1088/0953-8984/26/10/105401
Morris, J., Cowen, B. J., Teysseyre, S. & Hecht, A. A. Molecular dynamics investigation of threshold displacement energies in CaF2. Comput. Mater. Sci. 172, 109293 (2020).
doi: 10.1016/j.commatsci.2019.109293
Roy, A., Devanathan, R., Johnson, D. D. & Balasubramanian, G. Grain-size effects on the deformation in nanocrystalline multi-principal element alloy. Mater. Chem. Phys. 277, 125546 (2022).
doi: 10.1016/j.matchemphys.2021.125546
Roy, A., Munshi, J. & Balasubramanian, G. Low energy atomic traps sluggardize the diffusion in compositionally complex refractory alloys. Intermetallics 131, 107106 (2021).
doi: 10.1016/j.intermet.2021.107106
Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1, 011002 (2013).
doi: 10.1063/1.4812323
Mitchell, P. & Fincham, D. Shell model simulations by adiabatic dynamics. J. Phys. Condens. Matter 5, 1031 (1993).
doi: 10.1088/0953-8984/5/8/006
Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015).
doi: 10.1016/j.cpc.2015.07.012
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
doi: 10.1006/jcph.1995.1039
Trung, N., Phuong, H. & Starostenkov, M. D. Molecular dynamics simulation of displacement cascades in B2 NiAl. Lett. Mater. 9, 168–172 (2019).
doi: 10.22226/2410-3535-2019-2-168-172
Chen, N., Huang, D., Heller, E. R., Cardimona, D. A. & Gao, F. Atomistic simulation of displacement damage and effective nonionizing energy loss in InAs. Phys. Rev. Mater. 5, 033603 (2021).
doi: 10.1103/PhysRevMaterials.5.033603
Béland, L. K. et al. Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys. J. Appl. Phys. 119, 085901 (2016).
doi: 10.1063/1.4942533
Tikhonchev, M., Svetukhin, V. & Gaganidze, E. MD simulation of atomic displacement cascades near chromium-rich clusters in FeCr alloy. J. Nucl. Mater. 442, S618–S623 (2013).
doi: 10.1016/j.jnucmat.2012.11.058
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).
doi: 10.1088/0965-0393/18/1/015012
Wigner, E. & Seitz, F. On the constitution of metallic sodium. Phys. Rev. 43, 804 (1933).
doi: 10.1103/PhysRev.43.804
Nordlund, K. et al. Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 9, 1084 (2018).
pubmed: 29540689 pmcid: 5852139 doi: 10.1038/s41467-018-03415-5
Khiara, N. et al. A novel displacement cascade driven irradiation creep mechanism in α-zirconium: A molecular dynamics study. J. Nucl. Mater. 541, 152336 (2020).
doi: 10.1016/j.jnucmat.2020.152336
Boev, A. O., Zolnikov, K. P., Nelasov, I. V. & Lipnitskii, A. G. Effect of titanium on the primary radiation damage and swelling of vanadium-titanium alloys. Lett. Mater. 8, 263–267 (2018).
doi: 10.22226/2410-3535-2018-3-263-267
Devanathan, R. & Weber, W. J. (American Institute of Physics, 2005).
Lei, L. et al. Phase transitions of LiAlO
doi: 10.1016/j.jssc.2008.04.006
Marezio, M. & Remeika, J. High-pressure synthesis and crystal structure of α-LiAlO
doi: 10.1063/1.1727203
Was, G. S. Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2016).
Jiang, W. et al. Irradiation effects and hydrogen behavior in H
doi: 10.1016/j.jnucmat.2016.03.014

Auteurs

Ankit Roy (A)

Pacific Northwest National Laboratory, Richland, WA, 99354, USA. ankit.roy@pnnl.gov.

Andrew M Casella (AM)

Pacific Northwest National Laboratory, Richland, WA, 99354, USA.

David J Senor (DJ)

Pacific Northwest National Laboratory, Richland, WA, 99354, USA.

Weilin Jiang (W)

Pacific Northwest National Laboratory, Richland, WA, 99354, USA.

Ram Devanathan (R)

Pacific Northwest National Laboratory, Richland, WA, 99354, USA.

Classifications MeSH