Molecular dynamics simulations of displacement cascades in LiAlO
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 Jan 2024
22 Jan 2024
Historique:
received:
13
06
2023
accepted:
02
01
2024
medline:
23
1
2024
pubmed:
23
1
2024
entrez:
22
1
2024
Statut:
epublish
Résumé
Molecular dynamics was employed to investigate the radiation damage due to collision cascades in LiAlO
Identifiants
pubmed: 38253632
doi: 10.1038/s41598-024-51222-4
pii: 10.1038/s41598-024-51222-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1897Informations de copyright
© 2024. © Battelle Memorial Institute 2024.
Références
Jiang, W. et al. Microstructural evolution and precipitation in γ-LiAlO
doi: 10.1063/5.0089865
Senor, D. J. Recommendations for Tritium Science and Technology Research and Development in Support of the Tritium Readiness Campaign, TTP-7-084. (Pacific Northwest National Lab.(PNNL), Richland, WA (United States), (2013).
Auvray-Gely, M., Dunlop, A. & Hobbs, L. Irradiation damage in lithium ceramics. J. Nucl. Mater. 133, 230–233 (1985).
doi: 10.1016/0022-3115(85)90140-0
Hetaba, W., Mogilatenko, A. & Neumann, W. Electron beam-induced oxygen desorption in γ-LiAlO
doi: 10.1016/j.micron.2010.03.004
Dienes, G. J. Radiation effects in solids. Ann. Rev. Nucl. Sci. 2, 187–220 (1953).
doi: 10.1146/annurev.ns.02.120153.001155
Ishida, T. et al. Study of the radiation damage effect on Titanium metastable beta alloy by high intensity proton beam. Nucl. Mater. Energy 15, 169–174 (2018).
doi: 10.1016/j.nme.2018.04.006
Ishida, T. et al. Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: Radiation-induced omega phase transformation in Ti–6Al–4V. J. Nucl. Mater. 541, 152413 (2020).
doi: 10.1016/j.jnucmat.2020.152413
Roy, A., Senor, D. J., Edwards, D. J., Casella, A. M. & Devanathan, R. Insights into radiation resistance of titanium alloys from displacement cascade simulations. J. Nucl. Mater. 586, 154695 (2023).
doi: 10.1016/j.jnucmat.2023.154695
Roy, A., Senor, D. J., Casella, A. M. & Devanathan, R. Molecular dynamics simulations of radiation response of LiAlO
doi: 10.1016/j.jnucmat.2023.154280
Setyawan, W., Senor, D. J. & Devanathan, R. Insights on amorphization of lithium aluminate from atomistic simulation. J. Phys. Chem. C 121, 7635–7642 (2017).
doi: 10.1021/acs.jpcc.6b12562
Nakazawa, T., Grismanovs, V., Yamaki, D., Katano, Y. & Aruga, T. Disordering in Li
doi: 10.1016/S0168-583X(03)00712-2
Sahoo, D. R., Chaudhuri, P. & Swaminathan, N. A molecular dynamics study of displacement cascades and radiation induced amorphization in Li
doi: 10.1016/j.commatsci.2021.110783
Kobayashi, M., Toda, K., Oya, Y. & Okuno, K. Dependency of irradiation damage density on tritium migration behaviors in Li
doi: 10.1016/j.jnucmat.2013.12.001
Kobayashi, M., Oya, Y., Munakata, K. & Okuno, K. Developing a tritium release model for Li
doi: 10.1016/j.jnucmat.2014.11.047
Oyaidzu, M. et al. Correlation between annihilation of radiation defects and tritium release in Li
doi: 10.1016/j.jnucmat.2004.04.223
Tsuchihira, H., Oda, T. & Tanaka, S. Molecular-dynamics simulation of threshold displacement energies in lithium aluminate. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269, 1707–1711 (2011).
doi: 10.1016/j.nimb.2010.11.004
Setyawan, W., Senor, D. J. & Devanathan, R. Role of interfaces in damage process of irradiated lithium aluminate nanocrystals. J. Am. Ceramic Soc. 102, 1982–1993 (2019).
doi: 10.1111/jace.16051
Devaraj, A. et al. Neutron irradiation induced changes in isotopic abundance of 6Li and 3D nanoscale distribution of tritium in LiAlO
doi: 10.1016/j.matchar.2021.111095
Wiedemann, D. et al. Unravelling ultraslow lithium-ion diffusion in γ-LiAlO
doi: 10.1021/acs.chemmater.5b04608
Jacobs, J.-P., San Miguel, M. A., Alvarez, L. J. & Giral, P. B. Lithium diffusion in γ-LiAlO
doi: 10.1016/S0022-3115(96)00435-7
Tsuchihira, H., Oda, T. & Tanaka, S. Derivation of potential model for LiAlO
doi: 10.1016/j.jnucmat.2009.10.041
Kuganathan, N., Dark, J., Sgourou, E., Panayiotatos, Y. & Chroneos, A. Atomistic simulations of the defect chemistry and self-diffusion of Li-ion in LiAlO
doi: 10.3390/en12152895
Kuganathan, N. & Islam, M. Li
doi: 10.1021/cm902163k
Sauer, J., Schröder, K.-P. & Termath, V. Comparing the acidities of microporous aluminosilicate and silico-aluminophosphate catalysts: A combined quantum mechanics-interatomic potential function study. Collect. Czechoslov. Chem. Commun. 63, 1394–1408 (1998).
doi: 10.1135/cccc19981394
Olson, C. L., Nelson, J. & Islam, M. S. Defect chemistry, surface structures, and lithium insertion in anatase TiO
pubmed: 16706458
doi: 10.1021/jp057261l
Ziegler, J. F. & Biersack, J. P. Treatise on Heavy-Ion Science 93–129 (Springer, Berlin, 1985).
doi: 10.1007/978-1-4615-8103-1_3
Cooper, M., Rushton, M. & Grimes, R. A many-body potential approach to modelling the thermomechanical properties of actinide oxides. J. Phys. Condens. Matter 26, 105401 (2014).
pubmed: 24553129
doi: 10.1088/0953-8984/26/10/105401
Morris, J., Cowen, B. J., Teysseyre, S. & Hecht, A. A. Molecular dynamics investigation of threshold displacement energies in CaF2. Comput. Mater. Sci. 172, 109293 (2020).
doi: 10.1016/j.commatsci.2019.109293
Roy, A., Devanathan, R., Johnson, D. D. & Balasubramanian, G. Grain-size effects on the deformation in nanocrystalline multi-principal element alloy. Mater. Chem. Phys. 277, 125546 (2022).
doi: 10.1016/j.matchemphys.2021.125546
Roy, A., Munshi, J. & Balasubramanian, G. Low energy atomic traps sluggardize the diffusion in compositionally complex refractory alloys. Intermetallics 131, 107106 (2021).
doi: 10.1016/j.intermet.2021.107106
Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1, 011002 (2013).
doi: 10.1063/1.4812323
Mitchell, P. & Fincham, D. Shell model simulations by adiabatic dynamics. J. Phys. Condens. Matter 5, 1031 (1993).
doi: 10.1088/0953-8984/5/8/006
Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015).
doi: 10.1016/j.cpc.2015.07.012
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
doi: 10.1006/jcph.1995.1039
Trung, N., Phuong, H. & Starostenkov, M. D. Molecular dynamics simulation of displacement cascades in B2 NiAl. Lett. Mater. 9, 168–172 (2019).
doi: 10.22226/2410-3535-2019-2-168-172
Chen, N., Huang, D., Heller, E. R., Cardimona, D. A. & Gao, F. Atomistic simulation of displacement damage and effective nonionizing energy loss in InAs. Phys. Rev. Mater. 5, 033603 (2021).
doi: 10.1103/PhysRevMaterials.5.033603
Béland, L. K. et al. Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys. J. Appl. Phys. 119, 085901 (2016).
doi: 10.1063/1.4942533
Tikhonchev, M., Svetukhin, V. & Gaganidze, E. MD simulation of atomic displacement cascades near chromium-rich clusters in FeCr alloy. J. Nucl. Mater. 442, S618–S623 (2013).
doi: 10.1016/j.jnucmat.2012.11.058
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).
doi: 10.1088/0965-0393/18/1/015012
Wigner, E. & Seitz, F. On the constitution of metallic sodium. Phys. Rev. 43, 804 (1933).
doi: 10.1103/PhysRev.43.804
Nordlund, K. et al. Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 9, 1084 (2018).
pubmed: 29540689
pmcid: 5852139
doi: 10.1038/s41467-018-03415-5
Khiara, N. et al. A novel displacement cascade driven irradiation creep mechanism in α-zirconium: A molecular dynamics study. J. Nucl. Mater. 541, 152336 (2020).
doi: 10.1016/j.jnucmat.2020.152336
Boev, A. O., Zolnikov, K. P., Nelasov, I. V. & Lipnitskii, A. G. Effect of titanium on the primary radiation damage and swelling of vanadium-titanium alloys. Lett. Mater. 8, 263–267 (2018).
doi: 10.22226/2410-3535-2018-3-263-267
Devanathan, R. & Weber, W. J. (American Institute of Physics, 2005).
Lei, L. et al. Phase transitions of LiAlO
doi: 10.1016/j.jssc.2008.04.006
Marezio, M. & Remeika, J. High-pressure synthesis and crystal structure of α-LiAlO
doi: 10.1063/1.1727203
Was, G. S. Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2016).
Jiang, W. et al. Irradiation effects and hydrogen behavior in H
doi: 10.1016/j.jnucmat.2016.03.014