The gastrointestinal tract is a major source of the acute metformin-stimulated rise in GDF15.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 Jan 2024
Historique:
received: 23 11 2023
accepted: 10 01 2024
medline: 23 1 2024
pubmed: 23 1 2024
entrez: 22 1 2024
Statut: epublish

Résumé

The hormone GDF15 is secreted in response to cellular stressors. Metformin elevates circulating levels of GDF15, an action important for the drug's beneficial effects on body weight. Metformin can also inhibit mammalian respiratory complex I, leading to decreases in ATP:AMP ratio, activation of AMP Kinase (AMPK), and increased GDF15 production. We undertook studies using a range of mice with tissue-specific loss of Gdf15 (namely gut, liver and global deletion) to determine the relative contributions of two classical metformin target tissues, the gut and liver, to the elevation of GDF15 seen with metformin. In addition, we performed comparative studies with another pharmacological agent, the AMP kinase pan-activator, MK-8722. Deletion of Gdf15 from the intestinal epithelium significantly reduced the circulating GDF15 response to oral metformin, whereas deletion of Gdf15 from the liver had no effect. In contrast, deletion of Gdf15 from the liver, but not the gut, markedly reduced circulating GDF15 responses to MK-8722. Further, our data show that, while GDF15 restricts high-fat diet-induced weight gain, the intestinal production of GDF15 is not necessary for this effect. These findings add to the body of evidence implicating the intestinal epithelium in key aspects of the pharmacology of metformin action.

Identifiants

pubmed: 38253650
doi: 10.1038/s41598-024-51866-2
pii: 10.1038/s41598-024-51866-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1899

Subventions

Organisme : Medical Research Council Metabolic Diseases Unit Disease Model Core
ID : MC_UU_00014/5
Organisme : MRC Metabolic Diseases Unit
ID : MC_UU_00014/1
Organisme : NIHR Clinical Lectureship
ID : CL-2019-14-504

Informations de copyright

© 2024. The Author(s).

Références

Lachin, J. M. et al. Factors associated with diabetes onset during metformin versus placebo therapy in the Diabetes Prevention Program. Diabetes 56(4), 1153–1159. https://doi.org/10.2337/db06-0918 (2007).
doi: 10.2337/db06-0918 pubmed: 17395752
Pénicaud, L., Hitier, Y., Ferré, P. & Girard, J. Hypoglycaemic effect of metformin in genetically obese (fa/fa) rats results from an increased utilization of blood glucose by intestine. Biochem. J. 262(3), 881–885 (1989).
doi: 10.1042/bj2620881 pubmed: 2686622 pmcid: 1133356
Coll, A. P. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 578(7795), 444–448. https://doi.org/10.1038/s41586-019-1911-y (2020).
doi: 10.1038/s41586-019-1911-y pubmed: 31875646
Klein, A. B. et al. The GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance. Cell Rep. 40(8), 111258. https://doi.org/10.1016/j.celrep.2022.111258 (2022).
doi: 10.1016/j.celrep.2022.111258 pubmed: 36001956
Myers, R. W. et al. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357(6350), 507–511. https://doi.org/10.1126/science.aah5582 (2017).
doi: 10.1126/science.aah5582 pubmed: 28705990
Day, E. A. et al. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat. Metabol. 1(12), 1202–1208. https://doi.org/10.1038/s42255-019-0146-4 (2019).
doi: 10.1038/s42255-019-0146-4
Townsend, L. K. et al. AMPK mediates energetic stress-induced liver GDF15. FASEB J. 35(1), e21218. https://doi.org/10.1096/fj.202000954R (2021).
doi: 10.1096/fj.202000954R pubmed: 33337559
El-Mir, M. Y. et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275(1), 223–228. https://doi.org/10.1074/jbc.275.1.223 (2000).
doi: 10.1074/jbc.275.1.223 pubmed: 10617608
Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348(Pt 3), 607–614 (2000).
doi: 10.1042/bj3480607 pubmed: 10839993 pmcid: 1221104
Bridges, H. R. et al. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 379(6630), 351–357. https://doi.org/10.1126/science.ade3332 (2023).
doi: 10.1126/science.ade3332 pubmed: 36701435 pmcid: 7614227
LaMoia, T. E. & Shulman, G. I. Cellular and molecular mechanisms of metformin action. Endocr. Rev. 42(1), 77–96. https://doi.org/10.1210/endrev/bnaa023 (2020).
doi: 10.1210/endrev/bnaa023 pmcid: 7846086
Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 108(8), 1167–1174 (2001).
doi: 10.1172/JCI13505 pubmed: 11602624 pmcid: 209533
Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510(7506), 542–546. https://doi.org/10.1038/nature13270 (2014).
doi: 10.1038/nature13270 pubmed: 24847880 pmcid: 4074244
Patel, S. et al. GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell Metabol. 29(3), 707-718.e8. https://doi.org/10.1016/j.cmet.2018.12.016 (2019).
doi: 10.1016/j.cmet.2018.12.016
Patel, S. et al. Combined genetic deletion of GDF15 and FGF21 has modest effects on body weight, hepatic steatosis and insulin resistance in high fat fed mice. Mol. Metabol. 65, 101589. https://doi.org/10.1016/j.molmet.2022.101589 (2022).
doi: 10.1016/j.molmet.2022.101589
Zhang, S.-Y. et al. Metformin triggers a kidney GDF15-dependent area postrema axis to regulate food intake and body weight. Cell Metabol. https://doi.org/10.1016/j.cmet.2023.03.014 (2023).
doi: 10.1016/j.cmet.2023.03.014
Bailey, C. J., Wilcock, C. & Scarpello, J. H. B. Metformin and the intestine. Diabetologia 51(8), 1552–1553. https://doi.org/10.1007/s00125-008-1053-5 (2008).
doi: 10.1007/s00125-008-1053-5 pubmed: 18528677
Wilcock, C., Wyre, N. D. & Bailey, C. J. Subcellular distribution of metformin in rat liver. J. Pharm. Pharmacol. 43(6), 442–444. https://doi.org/10.1111/j.2042-7158.1991.tb03507.x (1991).
doi: 10.1111/j.2042-7158.1991.tb03507.x pubmed: 1681061
Wilcock, C. & Bailey, C. J. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24(1), 49–57. https://doi.org/10.3109/00498259409043220 (1994).
doi: 10.3109/00498259409043220 pubmed: 8165821
Gormsen, L. C. et al. In vivo imaging of human 11C-metformin in peripheral organs: Dosimetry, biodistribution, and kinetic analyses. J. Nucl. Med. 57(12), 1920–1926. https://doi.org/10.2967/jnumed.116.177774 (2016).
doi: 10.2967/jnumed.116.177774 pubmed: 27469359
Montero, R. et al. GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction. PLoS One 11(2), e0148709. https://doi.org/10.1371/journal.pone.0148709 (2016).
doi: 10.1371/journal.pone.0148709 pubmed: 26867126 pmcid: 4750949
Poulsen, N. S. et al. Growth and differentiation factor 15 as a biomarker for mitochondrial myopathy. Mitochondrion 50, 35–41. https://doi.org/10.1016/j.mito.2019.10.005 (2020).
doi: 10.1016/j.mito.2019.10.005 pubmed: 31669236
Kang, S. G. et al. Differential roles of GDF15 and FGF21 in systemic metabolic adaptation to the mitochondrial integrated stress response. iScience 24(3), 102181. https://doi.org/10.1016/j.isci.2021.102181 (2021).
doi: 10.1016/j.isci.2021.102181 pubmed: 33718833 pmcid: 7920832
Yang, M. et al. Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Sci. Rep. 11(1), 2529. https://doi.org/10.1038/s41598-021-81349-7 (2021).
doi: 10.1038/s41598-021-81349-7 pubmed: 33510216 pmcid: 7843649
Hawley, S. A., Gadalla, A. E., Olsen, G. S. & Hardie, D. G. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51(8), 2420–2425. https://doi.org/10.2337/diabetes.51.8.2420 (2002).
doi: 10.2337/diabetes.51.8.2420 pubmed: 12145153
Meng, S. et al. Metformin activates AMP-activated protein kinase by promoting formation of the αβγ heterotrimeric complex. J. Biol. Chem. 290(6), 3793–3802. https://doi.org/10.1074/jbc.M114.604421 (2015).
doi: 10.1074/jbc.M114.604421 pubmed: 25538235
Zhang, C.-S. et al. Metformin activates AMPK through the lysosomal pathway. Cell Metabol. 24(4), 521–522. https://doi.org/10.1016/j.cmet.2016.09.003 (2016).
doi: 10.1016/j.cmet.2016.09.003
Miller, R. A. & Birnbaum, M. J. An energetic tale of AMPK-independent effects of metformin. J. Clin. Investig. 120(7), 2267–2270. https://doi.org/10.1172/JCI43661 (2010).
doi: 10.1172/JCI43661 pubmed: 20577046 pmcid: 2898617
Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Investig. 120(7), 2355–2369. https://doi.org/10.1172/JCI40671 (2010).
doi: 10.1172/JCI40671 pubmed: 20577053 pmcid: 2898585
Deschemin, J.-C., Foretz, M., Viollet, B. & Vaulont, S. AMPK is not required for the effect of metformin on the inhibition of BMP6-induced hepcidin gene expression in hepatocytes. Sci. Rep. 7(1), 12679. https://doi.org/10.1038/s41598-017-12976-2 (2017).
doi: 10.1038/s41598-017-12976-2 pubmed: 28978947 pmcid: 5627262
Duca, F. A. et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat. Med. 21(5), 506–511. https://doi.org/10.1038/nm.3787 (2015).
doi: 10.1038/nm.3787 pubmed: 25849133 pmcid: 6104807
Murphy, E. A., Velazquez, K. T. & Herbert, K. M. Influence of high-fat diet on gut microbiota: A driving force for chronic disease risk. Curr. Opin. Clin. Nutr. Metabol. Care 18(5), 515–520. https://doi.org/10.1097/MCO.0000000000000209 (2015).
doi: 10.1097/MCO.0000000000000209
Shang, Y. et al. Short-term high-fat diet induces obesity-enhancing changes in mouse gut microbiota that are partially reversed by cessation of the high-fat diet. Lipids 52(6), 499–511. https://doi.org/10.1007/s11745-017-4253-2 (2017).
doi: 10.1007/s11745-017-4253-2 pubmed: 28429150
Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23(7), 850–858. https://doi.org/10.1038/nm.4345 (2017).
doi: 10.1038/nm.4345 pubmed: 28530702
Sun, L. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24(12), 1919–1929. https://doi.org/10.1038/s41591-018-0222-4 (2018).
doi: 10.1038/s41591-018-0222-4 pubmed: 30397356 pmcid: 6479226
Lee, H. et al. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes 9(2), 155–165. https://doi.org/10.1080/19490976.2017.1405209 (2018).
doi: 10.1080/19490976.2017.1405209 pubmed: 29157127 pmcid: 5989809
Bauer, P. V. et al. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metabol. 27(1), 101-117.e5. https://doi.org/10.1016/j.cmet.2017.09.019 (2018).
doi: 10.1016/j.cmet.2017.09.019
Lee, H. et al. Downregulation of IL-18 expression in the gut by metformin-induced gut microbiota modulation. Immune Netw. 19(4), e28. https://doi.org/10.4110/in.2019.19.e28 (2019).
doi: 10.4110/in.2019.19.e28 pubmed: 31501716 pmcid: 6722274
Tsai, V.W.-W. et al. TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS One 8(2), e55174. https://doi.org/10.1371/journal.pone.0055174 (2013).
doi: 10.1371/journal.pone.0055174 pubmed: 23468844 pmcid: 3585300
Tran, T., Yang, J., Gardner, J. & Xiong, Y. GDF15 deficiency promotes high fat diet-induced obesity in mice. PLoS One 13(8), e0201584. https://doi.org/10.1371/journal.pone.0201584 (2018).
doi: 10.1371/journal.pone.0201584 pubmed: 30070999 pmcid: 6072047
Bailey, C. J., Mynett, K. J. & Page, T. Importance of the intestine as a site of metformin-stimulated glucose utilization. Br. J. Pharmacol. 112(2), 671–675. https://doi.org/10.1111/j.1476-5381.1994.tb13128.x (1994).
doi: 10.1111/j.1476-5381.1994.tb13128.x pubmed: 8075887 pmcid: 1910373
McCreight, L. J., Bailey, C. J. & Pearson, E. R. Metformin and the gastrointestinal tract. Diabetologia 59, 426–435. https://doi.org/10.1007/s00125-015-3844-9 (2016).
doi: 10.1007/s00125-015-3844-9 pubmed: 26780750 pmcid: 4742508
Gontier, E. et al. High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur. J. Nucl. Med. Mol. Imaging 35(1), 95–99. https://doi.org/10.1007/s00259-007-0563-6 (2008).
doi: 10.1007/s00259-007-0563-6 pubmed: 17786437
Oh, J.-R. et al. Impact of medication discontinuation on increased intestinal FDG accumulation in diabetic patients treated with metformin. AJR Am. J. Roentgenol. 195(6), 1404–1410. https://doi.org/10.2214/AJR.10.4663 (2010).
doi: 10.2214/AJR.10.4663 pubmed: 21098202
Buse, J. B. et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: Results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care 39(2), 198–205. https://doi.org/10.2337/dc15-0488 (2016).
doi: 10.2337/dc15-0488 pubmed: 26285584
Henry, R. R. et al. Improved glycemic control with minimal systemic metformin exposure: Effects of metformin delayed-release (metformin DR) targeting the lower bowel over 16 weeks in a randomized trial in subjects with type 2 diabetes. PLoS One 13(9), e0203946. https://doi.org/10.1371/journal.pone.0203946 (2018).
doi: 10.1371/journal.pone.0203946 pubmed: 30252913 pmcid: 6155522
Gormsen, L. C. et al. Metformin increases endogenous glucose production in non-diabetic individuals and individuals with recent-onset type 2 diabetes. Diabetologia 62(7), 1251–1256. https://doi.org/10.1007/s00125-019-4872-7 (2019).
doi: 10.1007/s00125-019-4872-7 pubmed: 30976851
Tobar, N. et al. Metformin acts in the gut and induces gut-liver crosstalk. Proc. Natl. Acad. Sci. 120(4), e2211933120. https://doi.org/10.1073/pnas.2211933120 (2023).
doi: 10.1073/pnas.2211933120 pubmed: 36656866 pmcid: 9942892
Madison, B. B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277(36), 33275–33283. https://doi.org/10.1074/jbc.M204935200 (2002).
doi: 10.1074/jbc.M204935200 pubmed: 12065599

Auteurs

John W R Kincaid (JWR)

Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
Harvard Medical School, Boston, MA, 02115, USA.

Debra Rimmington (D)

Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.

John A Tadross (JA)

Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
NHS East Genomic Laboratory Hub, East Genomics, Cambridge, CB2 0QQ, UK.
Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.

Irene Cimino (I)

Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.

Ilona Zvetkova (I)

Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.

Arthur Kaser (A)

Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.

Paul Richards (P)

Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.

Satish Patel (S)

Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.

Stephen O'Rahilly (S)

Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.

Anthony P Coll (AP)

Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK. apc36@cam.ac.uk.

Classifications MeSH