Assessing acute thermal assays as a rapid screening tool for coral restoration.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 Jan 2024
Historique:
received: 05 07 2023
accepted: 11 01 2024
medline: 23 1 2024
pubmed: 23 1 2024
entrez: 22 1 2024
Statut: epublish

Résumé

Escalating environmental threats to coral reefs coincides with global advancements in coral restoration programs. To improve long-term efficacy, practitioners must consider incorporating genotypes resilient to ocean warming and disease while maintaining genetic diversity. Identifying such genotypes typically occurs under long-term exposures that mimic natural stressors, but these experiments can be time-consuming, costly, and introduce tank effects, hindering scalability for hundreds of nursery genotypes used for outplanting. Here, we evaluated the efficacy of the acute Coral Bleaching Automated Stress System (CBASS) against long-term exposures on the bleaching response of Acropora cervicornis, the dominant restoration species in Florida's Coral Reef. Comparing bleaching metrics, F

Identifiants

pubmed: 38253660
doi: 10.1038/s41598-024-51944-5
pii: 10.1038/s41598-024-51944-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1898

Subventions

Organisme : State of Florida Fish and Wildlife Conservation Commission
ID : 20151
Organisme : State of Florida Fish and Wildlife Conservation Commission
ID : 20151
Organisme : State of Florida Fish and Wildlife Conservation Commission
ID : 20151
Organisme : State of Florida Fish and Wildlife Conservation Commission
ID : 20151
Organisme : State of Florida Fish and Wildlife Conservation Commission
ID : 20151
Organisme : State of Florida Fish and Wildlife Conservation Commission
ID : 20151

Informations de copyright

© 2024. The Author(s).

Références

Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C. & Possingham, H. P. Securing a long-term future for coral reefs. Trends Ecol. Evol. 33, 936–944 (2018).
pubmed: 30385077 doi: 10.1016/j.tree.2018.09.006
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the anthropocene. Science 359, 80–83 (2018).
pubmed: 29302011 doi: 10.1126/science.aan8048
Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: Lessons from Ofu. Am. Samoa. Front. Mar. Sci. 4, 434 (2018).
doi: 10.3389/fmars.2017.00434
Cornwell, B. et al. Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral Acropora hyacinthus in Palau. eLife 10, e64790 (2021).
pubmed: 34387190 pmcid: 8457836 doi: 10.7554/eLife.64790
Drury, C. Resilience in reef-building corals: The ecological and evolutionary importance of the host response to thermal stress. Mol. Ecol. 29, 448–465 (2020).
pubmed: 31845413 doi: 10.1111/mec.15337
Page, C. A., Giuliano, C., Bay, L. K. & Randall, C. J. High survival following bleaching underscores the resilience of a frequently disturbed region of the great barrier reef. Ecosphere 14, e4280 (2023).
doi: 10.1002/ecs2.4280
Humanes, A. et al. Within-population variability in coral heat tolerance indicates climate adaptation potential. Proc. R. Soc. B Biol. Sci. 289, 20220872 (2022).
doi: 10.1098/rspb.2022.0872
Fox, M. D. et al. Increasing coral reef resilience through successive marine heatwaves. Geophys. Res. Lett. 48, e2021GL094128 (2021).
doi: 10.1029/2021GL094128
Kuffner, I. B. & Toth, L. T. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 30, 706–715 (2016).
pubmed: 27029403 doi: 10.1111/cobi.12725
Aronson, R. B. & Precht, W. F. White-band disease and the changing face of Caribbean coral reefs. in The Ecology and Etiology of Newly Emerging Marine Diseases (ed. Porter, J. W.) 25–38 (Springer Netherlands, 2001). doi: https://doi.org/10.1007/978-94-017-3284-0_2 .
Manzello, D. P. Rapid recent warming of coral reefs in the Florida keys. Sci. Rep. 5, 16762 (2015).
pubmed: 26567884 pmcid: 4645222 doi: 10.1038/srep16762
Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 4, e2597 (2016).
pubmed: 27781176 pmcid: 5075686 doi: 10.7717/peerj.2597
Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida keys national marine sanctuary. PLOS ONE 15, e0231817 (2020).
pubmed: 32374734 pmcid: 7202597 doi: 10.1371/journal.pone.0231817
van Woesik, R. et al. Differential survival of nursery-reared Acropora cervicornis outplants along the Florida reef tract. Restor. Ecol. 29, e13302 (2021).
doi: 10.1111/rec.13302
Cunning, R. et al. Census of heat tolerance among Florida’s threatened staghorn corals finds resilient individuals throughout existing nursery populations. Proc. R. Soc. B Biol. Sci. 288, 20211613 (2021).
doi: 10.1098/rspb.2021.1613
Koch, H. R., Azu, Y., Bartels, E. & Muller, E. M. No apparent cost of disease resistance on reproductive output in Acropora cervicornis genets used for active coral reef restoration in Florida. Front. Mar. Sci. 9, 958500 (2022).
doi: 10.3389/fmars.2022.958500
Wright, R. M. et al. Positive genetic associations among fitness traits support evolvability of a reef-building coral under multiple stressors. Glob. Change Biol. 25, 3294–3304 (2019).
doi: 10.1111/gcb.14764
Klepac, C. N. & Barshis, D. J. Reduced thermal tolerance of massive coral species in a highly variable environment. Proc. R. Soc. B Biol. Sci. 287, 20201379 (2020).
doi: 10.1098/rspb.2020.1379
Walker, N. S., Nestor, V., Golbuu, Y. & Palumbi, S. R. Coral bleaching resistance variation is linked to differential mortality and skeletal growth during recovery. Evol. Appl. 16, 504–517 (2023).
pubmed: 36793702 doi: 10.1111/eva.13500
Ladd, M. C., Shantz, A. A., Bartels, E. & Burkepile, D. E. Thermal stress reveals a genotype-specific tradeoff between growth and tissue loss in restored Acropora cervicornis. Mar. Ecol. Prog. Ser. 572, 129–139 (2017).
doi: 10.3354/meps12169
Jokiel, P. L. & Coles, S. L. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8, 155–162 (1990).
doi: 10.1007/BF00265006
Kenkel, C. D. et al. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol. Ecol. 22, 4335–4348 (2013).
pubmed: 23906315 doi: 10.1111/mec.12391
Evensen, N. R. et al. Empirically derived thermal thresholds of four coral species along the Red Sea using a portable and standardized experimental approach. Coral Reefs 41, 239–252 (2022).
doi: 10.1007/s00338-022-02233-y
Drury, C. & Lirman, D. Genotype by environment interactions in coral bleaching. Proc. R. Soc. B Biol. Sci. 288, 20210177 (2021).
doi: 10.1098/rspb.2021.0177
Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. 30, 4466–4480 (2021).
pubmed: 34342082 doi: 10.1111/mec.16064
Oliver, T. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance?. Coral Reefs 30, 429–440 (2011).
doi: 10.1007/s00338-011-0721-y
Schoepf, V., Stat, M., Falter, J. L. & McCulloch, M. T. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci. Rep. 5, 17639 (2015).
pubmed: 26627576 pmcid: 4667274 doi: 10.1038/srep17639
Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Change Biol. 21, 236–249 (2015).
doi: 10.1111/gcb.12706
Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 1–8 (2017).
doi: 10.1038/ncomms14213
Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
pubmed: 24762535 doi: 10.1126/science.1251336
Elder, H. et al. Long-term maintenance of a heterologous symbiont association in Acropora palmata on natural reefs. ISME J. 17, 486–489 (2023).
pubmed: 36510006 doi: 10.1038/s41396-022-01349-x
Gantt, S. E. et al. Wild and nursery-raised corals: Comparative physiology of two framework coral species. Coral Reefs https://doi.org/10.1007/s00338-022-02333-9 (2023).
doi: 10.1007/s00338-022-02333-9
Muller, E. M. et al. Heritable variation and lack of tradeoffs suggest adaptive capacity in Acropora cervicornis despite negative synergism under climate change scenarios. Proc. R. Soc. B Biol. Sci. 288, 20210923 (2021).
doi: 10.1098/rspb.2021.0923
Klepac, C. N. et al. Symbiont composition and coral genotype determines massive coral species performance under end-of-century climate scenarios. Front. Mar. Sci. 10, 1026426 (2023).
doi: 10.3389/fmars.2023.1026426
Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).
pubmed: 33222325 pmcid: 8243963 doi: 10.1002/eap.2262
Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Change Biol. 26, 4328–4343 (2020).
doi: 10.1111/gcb.15148
Evensen, N. R. et al. The coral bleaching automated stress system (CBASS): A low-cost, portable system for standardized empirical assessments of coral thermal limits. Limnol. Oceanogr. Methods n/a, (2023).
Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. 66, 1718–1729 (2021).
doi: 10.1002/lno.11715
Pineda, J. et al. Two spatial scales in a bleaching event: Corals from the mildest and the most extreme thermal environments escape mortality. Limnol. Oceanogr. 58, 1531–1545 (2013).
doi: 10.4319/lo.2013.58.5.1531
Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl. Acad. Sci. 116, 10586–10591 (2019).
pubmed: 31061118 pmcid: 6535031 doi: 10.1073/pnas.1721415116
Rinkevich, B. Rebuilding coral reefs: Does active reef restoration lead to sustainable reefs?. Curr. Opin. Environ. Sustain. 7, 28–36 (2014).
doi: 10.1016/j.cosust.2013.11.018
McClanahan, T. R. et al. Western Indian Ocean coral communities: Bleaching responses and susceptibility to extinction. Mar. Ecol. Prog. Ser. 337, 1–13 (2007).
doi: 10.3354/meps337001
Reich, H. G. et al. Genomic variation of an endosymbiotic dinoflagellate (Symbiodinium ‘fitti’) among closely related coral hosts. Mol. Ecol. 30, 3500–3514 (2021).
pubmed: 33964051 doi: 10.1111/mec.15952
O’Donnell, K. E., Lohr, K. E., Bartels, E., Baums, I. B. & Patterson, J. T. Acropora cervicornis genet performance and symbiont identity throughout the restoration process. Coral. Reefs 37, 1109–1118 (2018).
doi: 10.1007/s00338-018-01743-y
Muller, E. M., Bartels, E. & Baums, I. B. Bleaching causes loss of disease resistance within the threatened coral species Acropora cervicornis. eLife https://doi.org/10.7554/eLife.35066 (2018).
doi: 10.7554/eLife.35066 pubmed: 30398149 pmcid: 6245726
Evensen, N. R. et al. The roles of heating rate, intensity, and duration on the response of corals and their endosymbiotic algae to thermal stress. J. Exp. Mar. Biol. Ecol. 567, 151930 (2023).
doi: 10.1016/j.jembe.2023.151930
Warner, M. E., Fitt, W. K. & Schmidt, G. W. The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: A novel approach. Plant Cell Environ. 19, 291–299 (1996).
doi: 10.1111/j.1365-3040.1996.tb00251.x
Nielsen, J. J. V. et al. Experimental considerations of acute heat stress assays to quantify coral thermal tolerance. Sci. Rep. 12, 16831 (2022).
pubmed: 36207307 pmcid: 9546840 doi: 10.1038/s41598-022-20138-2
Kenkel, C. D., Setta, S. P. & Matz, M. V. Heritable differences in fitness-related traits among populations of the mustard hill coral. Porites Astreoides. Hered. 115, 509–516 (2015).
doi: 10.1038/hdy.2015.52
Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).
pubmed: 29700296 pmcid: 5920114 doi: 10.1038/s41467-018-04074-2
Klepac, C. N. & Barshis, D. J. High-resolution in situ thermal metrics coupled with acute heat stress experiments reveal differential coral bleaching susceptibility. Coral Reefs 41, 1045–1057 (2022).
doi: 10.1007/s00338-022-02276-1
DeMerlis, A. et al. Pre-exposure to a variable temperature treatment improves the response of Acropora cervicornis to acute thermal stress. Coral Reefs 41, 435–445 (2022).
doi: 10.1007/s00338-022-02232-z
Karp, R. F. Assessing thermal tolerance of Acropora cervicornis and its implications for coral restoration in south Florida. (2017).
Davies, S. W., Ries, J. B., Marchetti, A. & Castillo, K. D. Symbiodinium functional diversity in the coral siderastrea siderea is influenced by thermal stress and reef environment, but not ocean acidification. Front. Mar. Sci. 5, 150 (2018).
doi: 10.3389/fmars.2018.00150
Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl. Acad. Sci. 110, 1387–1392 (2013).
pubmed: 23297204 pmcid: 3557039 doi: 10.1073/pnas.1210224110
Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2, 747–762 (2021).
doi: 10.1038/s43017-021-00214-3
Hoadley, K. D. et al. A phenomic modeling approach for using chlorophyll-a fluorescence-based measurements on coral photosymbionts. Front. Mar. Sci. 10, 1092202 (2023).
doi: 10.3389/fmars.2023.1092202
Kitchen, S. A. et al. STAGdb: A 30K SNP genotyping array and science gateway for Acropora corals and their dinoflagellate symbionts. Sci. Rep. 10, 12488 (2020).
pubmed: 32719467 pmcid: 7385180 doi: 10.1038/s41598-020-69101-z
Pierrot, D. E. MS excel program developed for CO2 system calculations. Carbon Dioxide Inf. Anal. Cent. https://doi.org/10.3334/cdiac/otg.co2sys_xls_cdiac105a (2011).
Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part Oceanogr. Res. Pap. 34, 1733–1743 (1987).
doi: 10.1016/0198-0149(87)90021-5
Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure1. Limnol. Oceanogr. 18, 897–907 (1973).
doi: 10.4319/lo.1973.18.6.0897
Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol ethanol solvents. Photosynth. Res. 89, 27–41 (2006).
pubmed: 16763878 doi: 10.1007/s11120-006-9065-9
Callieri, M., Ranzuglia, G., Dellepiane, M., Cignoni, P. & Scopigno, R. Meshlab as a complete open tool for the integration of photos and colour with high-resolution 3D geometry data. Comput. Appl. Quant. Methods Archaeol. 406–16 (2012).
Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using r. PLOS ONE 10, e0146021 (2015).
pubmed: 26717316 pmcid: 4696819 doi: 10.1371/journal.pone.0146021
R Development Core Team. R: A language and environment for statistical computing. (2017).
Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34 (2020).
doi: 10.1038/s41561-019-0486-4
Oksanen, J. et al. vegan: community ecology package. 2019. R Package Version 2, (2015).
Martinez Arbizu, P. PairwiseAdonis: Pairwise multilevel comparison using adonis. R Package Version 041 (2020).
Kunzetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effect models. J. Stat. Softw. 82, 1–26 (2017).
Lenth, R. V. et al. emmeans: estimated marginal means, aka least-squares means. CRAN. (2020).
Lüdecke, D. sjPlot: Data visualization for statistics in social science. R Package Version 2814 (2023).
Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a correlation matrix. R Package Version 092 (2021).

Auteurs

C N Klepac (CN)

Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA. cklepac@stanford.edu.
Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA. cklepac@stanford.edu.

C G Petrik (CG)

Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA.
National Coral Reef Institute, Nova Southeastern University, Dania Beach, FL, USA.

E Karabelas (E)

Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA.
Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.

J Owens (J)

Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA.
Tufts University, Worcester, MA, USA.

E R Hall (ER)

Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA.
Mote Marine Laboratory, Sarasota, FL, USA.

E M Muller (EM)

Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA.
Mote Marine Laboratory, Sarasota, FL, USA.

Classifications MeSH