Rim4 is a Thermal Sensor and Driver of Meiosis-specific Stress Granules.
Journal
bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187
Informations de publication
Date de publication:
11 Jan 2024
11 Jan 2024
Historique:
medline:
23
1
2024
pubmed:
23
1
2024
entrez:
23
1
2024
Statut:
epublish
Résumé
Rim4 is a meiosis-specific RNA-binding protein (RBP) that sequesters mRNAs to suppress their translation. Previous work has defined the Rim4 C-terminal low-complexity domain (LCD) as sequences that form self-propagating amyloid-like aggregates. Here, we uncovered a dynamic and reversible form of Rim4 self-assembly primarily triggered by heat during meiosis, proportionally from 30°C to 42°C. The formed thermal Rim4 condensates in cell promptly stimulates stress granule (SG) assembly, recruiting SG-resident proteins, such as Pab1 and Pbp1, and strikingly, decreases the required temperature for meiotic SG formation (∼33°C) by ∼9°C as compared to mitosis (∼42°C). This sensitization of meiotic SG formation to heat effectively prevents meiosis progression and sporulation under harmful thermal turbulence. Meanwhile, the Rim4-positive meiotic SGs protect Rim4 and Rim4-sequestered mRNAs from autophagy to allow a rapid recovery from stalled meiosis upon the stress relief. Mechanistically, we found that the yeast 14-3-3 proteins (Bmh1 and Bmh2) and nucleic acids brake initiation of heat-induced Rim4 self-assembly, and Hsp104 facilitates the restoration of intracellular Rim4 distribution during the recovery.
Identifiants
pubmed: 38260504
doi: 10.1101/2024.01.09.574866
pmc: PMC10802437
pii:
doi:
Types de publication
Preprint
Langues
eng