Full-length transcriptome and RNA-Seq analyses reveal the resistance mechanism of sesame in response to Corynespora cassiicola.
Corynespora cassiicola
Sesame
WGCNA
full-length transcriptome
resistant
susceptible
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
23 Jan 2024
23 Jan 2024
Historique:
received:
26
05
2023
accepted:
03
01
2024
medline:
24
1
2024
pubmed:
24
1
2024
entrez:
23
1
2024
Statut:
epublish
Résumé
Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellowing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame susceptible variety (S) were collected at 0-48 hpi for transcriptome sequencing, and used a combined third-generation long-read and next-generation short-read technology approach to identify some key genes and main pathways related to resistance. The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we found that 12 hpi was the key time point leading to the resistance difference between the two sesame varieties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcription factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynespora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-related pathways. This study provides an important resource of genes contributing to disease resistance and will deepen our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.
Sections du résumé
BACKGROUND
BACKGROUND
Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellowing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame susceptible variety (S) were collected at 0-48 hpi for transcriptome sequencing, and used a combined third-generation long-read and next-generation short-read technology approach to identify some key genes and main pathways related to resistance.
RESULTS
RESULTS
The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we found that 12 hpi was the key time point leading to the resistance difference between the two sesame varieties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcription factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynespora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-related pathways.
CONCLUSIONS
CONCLUSIONS
This study provides an important resource of genes contributing to disease resistance and will deepen our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.
Identifiants
pubmed: 38262910
doi: 10.1186/s12870-024-04728-y
pii: 10.1186/s12870-024-04728-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
64Subventions
Organisme : China Agriculture Research System of MOF and MARA
ID : CARS-14
Organisme : China Agriculture Research System of MOF and MARA
ID : CARS-14
Organisme : China Agriculture Research System of MOF and MARA
ID : CARS-14
Organisme : China Agriculture Research System of MOF and MARA
ID : CARS-14
Organisme : China Agriculture Research System of MOF and MARA
ID : CARS-14
Organisme : China Agriculture Research System of MOF and MARA
ID : CARS-14
Organisme : China Agriculture Research System of MOF and MARA
ID : CARS-14
Organisme : the Key Project of Science and Technology of Henan Province
ID : 201300110600
Organisme : the Key Project of Science and Technology of Henan Province
ID : 201300110600
Organisme : the Key Project of Science and Technology of Henan Province
ID : 201300110600
Organisme : the Key Project of Science and Technology of Henan Province
ID : 201300110600
Organisme : Key Research and Development Project of Henan Province
ID : 221111520400
Organisme : Key Research and Development Project of Henan Province
ID : 221111520400
Organisme : Key Research and Development Project of Henan Province
ID : 221111520400
Informations de copyright
© 2024. The Author(s).
Références
Ahmed EA, Farrag AA, Kheder AA, Shaaban A. Effect of phytoplasma associated with sesame phyllody on ultrastructural modification, physio-biochemical traits, productivity and oil quality. Plants (Basel). 2022;11(4):477.
pubmed: 35214810
doi: 10.3390/plants11040477
Yadav R, Kalia S, Rangan P, Pradheep K, Rao GP, Kaur V, Pandey R, Rai V, Vasimalla CC, Langyan S, Sharma S, Thangavel B, Rana VS, Vishwakarma H, Shah A, Saxena A, Kumar A, Singh K, Siddique KHM. Current research trends and prospects for yield and quality improvement in sesame, an important oilseed crop. Front Plant Sci. 2022;13:863521.
pubmed: 35599863
pmcid: 9120847
doi: 10.3389/fpls.2022.863521
Gao D-X, Sun H-J, Na Y-B, Cheng H-S, Yang G, Xu J, Xu X-D. First report of root rot caused by Corynespora cassiicola on sesame in china. Plant Dis. 2018;102(8):1664.
doi: 10.1094/PDIS-12-17-1932-PDN
Jia M, Liu X, Zhao H, Ni Y, Liu H, Tian B. Cell-wall-degrading enzymes produced by sesame leaf spot pathogen Corynespora cassiicola. J Phytopathol. 2021;169(3):186–92.
doi: 10.1111/jph.12973
Chowdhury S, Basu A, Kundu S. Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Sci Rep. 2017;7(1):17251.
pubmed: 29222513
pmcid: 5722813
doi: 10.1038/s41598-017-17248-7
Rathod V, Hamid R, Tomar RS, Patel R, Padhiyar S, Kheni J, Thirumalaisamy PP, Munshi NS. Comparative RNA-Seq profiling of a resistant and susceptible peanut (Arachis hypogaea) genotypes in response to leaf rust infection caused by Puccinia arachidis. 3 Biotech. 2020;10(6):284.
pubmed: 32550103
pmcid: 7266923
doi: 10.1007/s13205-020-02270-w
Ma X, Zhao F, Su K, Lin H, Guo Y. Discovery of cold-resistance genes in Vitis amurensis using bud-based quantitative trait locus mapping and RNA-seq. BMC Genomics. 2022;23(1):551.
pubmed: 35918639
pmcid: 9347155
doi: 10.1186/s12864-022-08788-y
Hao L, Zhang Y, Wang S, Zhang W, Wang S, Xu C, Yu Y, Li T, Jiang F, Li W. A constitutive and drought-responsive mRNA undergoes long-distance transport in pear (Pyrus betulaefolia) phloem. Plant Sci. 2020;293:110419.
pubmed: 32081266
doi: 10.1016/j.plantsci.2020.110419
Kamber T, Buchmann JP, Pothier JF, Smits TH, Wicker T, Duffy B. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection. Sci Rep. 2016;6:21600.
pubmed: 26883568
pmcid: 4756370
doi: 10.1038/srep21600
Berhe M, Dossa K, You J, Mboup PA, Diallo IN, Diouf D, Zhang X, Wang L. Genome-wide association study and its applications in the non-model crop Sesamum indicum. BMC Plant Biol. 2021;21(1):283.
pubmed: 34157965
pmcid: 8218510
doi: 10.1186/s12870-021-03046-x
Dossa K, You J, Wang L, Zhang Y, Li D, Zhou R, Yu J, Wei X, Zhu X, Jiang S, Gao Y, Mmadi MA, Zhang X. Transcriptomic profiling of sesame during waterlogging and recovery. Sci Data. 2019;6(1):204.
pubmed: 31615988
pmcid: 6794253
doi: 10.1038/s41597-019-0226-z
Su X, Gao T, Zhang P, Li F, Wang D, Tian Y, Lu H, Zhang H, Wei S. Comparative physiological and transcriptomic analysis of sesame cultivars with different tolerance responses to heat stress. Physiol Mol Biol Plants. 2022;28(5):1131–46.
pubmed: 35722520
pmcid: 9203651
doi: 10.1007/s12298-022-01195-3
Radadiya N, Mangukia N, Antala V, Desai H, Chaudhari H, Dholaria TL, Dholaria D, Tomar RS, Golakiya BA, Mahatma MK. Transcriptome analysis of sesame-Macrophomina phaseolina interactions revealing the distinct genetic components for early defense responses. Physiol Mol Biol Plants. 2021;27(8):1675–93.
pubmed: 34539110
pmcid: 8405747
doi: 10.1007/s12298-021-01039-6
Yan W, Ni Y, Liu X, Zhao H, Chen Y, Jia M, Liu M, Liu H, Tian B. The mechanism of sesame resistance against Macrophomina phaseolina was revealed via a comparison of transcriptomes of resistant and susceptible sesame genotypes. BMC Plant Biol. 2021;21(1):159.
pubmed: 33781203
pmcid: 8008628
doi: 10.1186/s12870-021-02927-5
Silva WPK, Wijesundera RLC, Karunanayake EH, Jayasinghe CK, Priyanka UMS. New hosts of Corynespora cassiicola in Sri Lanka. Plant Dis. 2000;84(2):202.
pubmed: 30841332
doi: 10.1094/PDIS.2000.84.2.202D
Wang X, Zhang D, Cui N, Yu Y, Yu G, Fan H. Transcriptome and miRNA analyses of the response to Corynespora cassiicola in cucumber. Sci Rep. 2018;8(1):7798.
pubmed: 29773833
pmcid: 5958113
doi: 10.1038/s41598-018-26080-6
Ribeiro S, Label P, Garcia D, Montoro P, Pujade-Renaud V. Transcriptome profiling in susceptible and tolerant rubber tree clones in response to cassiicolin Cas1, a necrotrophic effector from Corynespora cassiicola. PLoS One. 2021;16(7):e0254541.
pubmed: 34320014
pmcid: 8318233
doi: 10.1371/journal.pone.0254541
Au KF, Sebastiano V, Afshar PT, Durruthy JD, Lee L, Williams BA, van Bakel H, Schadt EE, Reijo-Pera RA, Underwood JG, Wong WH. Characterization of the human ESC transcriptome by hybrid sequencing. Proc Natl Acad Sci U S A. 2013;110(50):E4821–30.
pubmed: 24282307
pmcid: 3864310
doi: 10.1073/pnas.1320101110
Sharon D, Tilgner H, Grubert F, Snyder M. A single-molecule long-read survey of the human transcriptome. Nat Biotechnol. 2013;31(11):1009–14.
pubmed: 24108091
pmcid: 4075632
doi: 10.1038/nbt.2705
Treutlein B, Gokce O, Quake SR, Sudhof TC. Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc Natl Acad Sci U S A. 2014;111(13):E1291–9.
pubmed: 24639501
pmcid: 3977267
doi: 10.1073/pnas.1403244111
Yan C, Zhang N, Wang Q, Fu Y, Zhao H, Wang J, Wu G, Wang F, Li X, Liao H. Full-length transcriptome sequencing reveals the molecular mechanism of potato seedlings responding to low-temperature. BMC Plant Biol. 2022;22(1):125.
pubmed: 35300606
pmcid: 8932150
doi: 10.1186/s12870-022-03461-8
Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, Schilkey F, Ben-Hur A, Reddy AS. A survey of the sorghum transcriptome using single-molecule long reads. Nat Commun. 2016;7:11706.
pubmed: 27339290
pmcid: 4931028
doi: 10.1038/ncomms11706
Li W, Lee J, Yu S, Wang F, Lv W, Zhang X, Li C, Yang J. Characterization and analysis of the transcriptome response to drought in Larix kaempferi using PacBio full-length cDNA sequencing integrated with de novo RNA-seq reads. Planta. 2021;253(2):28.
pubmed: 33423138
doi: 10.1007/s00425-020-03555-3
Hu Z, Zhang Y, He Y, Cao Q, Zhang T, Lou L, Cai Q. Full-Length transcriptome assembly of Italian ryegrass root integrated with RNA-Seq to identify genes in response to plant cadmium stress. Int J Mol Sci. 2020;21(3):1067.
pubmed: 32041113
pmcid: 7037684
doi: 10.3390/ijms21031067
Li Z, Bai D, Zhong Y, Lin M, Sun L, Qi X, Hu C, Fang J. Full-Length transcriptome and RNA-Seq analyses reveal the mechanisms underlying waterlogging tolerance in Kiwifruit (Actinidia valvata). Int J Mol Sci. 2022;23(6):3237.
pubmed: 35328659
pmcid: 8951935
doi: 10.3390/ijms23063237
Chao Q, Gao ZF, Zhang D, Zhao BG, Dong FQ, Fu CX, Liu LJ, Wang BC. The developmental dynamics of the populus stem transcriptome. Plant Biotechnol J. 2019;17(1):206–19.
pubmed: 29851301
doi: 10.1111/pbi.12958
Salmela L, Rivals E. LoRDEC: accurate and efficient long read error correction. Bioinformatics. 2014;30(24):3506–14.
pubmed: 25165095
pmcid: 4253826
doi: 10.1093/bioinformatics/btu538
Su G, Morris JH, Demchak B, Bader GD. Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics. 2014;47:8.13.1-24.
pubmed: 25199793
Yang P, Chang Y, Wang L, Wang S, Wu J. Regulatory mechanisms of the resistance to common bacterial blight revealed by transcriptomic analysis in common Bean (Phaseolus vulgaris L.). Front Plant Sci. 2021;12:800535.
pubmed: 35069659
doi: 10.3389/fpls.2021.800535
Cui M, Han S, Wang D, Haider MS, Guo J, Zhao Q, Du P, Sun Z, Qi F, Zheng Z, Huang B, Dong W, Li P, Zhang X. Gene co-expression network analysis of the comparative transcriptome identifies hub genes associated with resistance to Aspergillus flavus L. in cultivated Peanut (Arachis hypogaea L.). Front Plant Sci. 2022;13:899177.
pubmed: 35812950
pmcid: 9264616
doi: 10.3389/fpls.2022.899177
Cao X, Hu Y, Song J, Feng H, Wang J, Chen L, Wang L, Diao X, Wan Y, Liu S, Qiao Z. Transcriptome sequencing and metabolome analysis reveals the molecular mechanism of drought stress in millet. Int J Mol Sci. 2022;23(18):10792.
pubmed: 36142707
pmcid: 9501609
doi: 10.3390/ijms231810792
Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet. 2011;52(4):413–35.
pubmed: 21698376
pmcid: 3189340
doi: 10.1007/s13353-011-0057-x
Li D, Shao L, Xu T, Wang X, Zhang R, Zhang K, Xia Y, Zhang J. Hybrid RNA sequencing strategy for the dynamic transcriptomes of winter dormancy in an evergreen herbaceous perennial, iris japonica. Front Genet. 2022;13:841957.
pubmed: 35368689
pmcid: 8965894
doi: 10.3389/fgene.2022.841957
Kelleher P, Murphy J, Mahony J, van Sinderen D. Identification of DNA base modifications by means of pacific biosciences RS sequencing technology. Methods Mol Biol. 2018;1681:127–37.
pubmed: 29134592
doi: 10.1007/978-1-4939-7343-9_10
Cui Y, Gao X, Wang J, Shang Z, Zhang Z, Zhou Z, Zhang K. Full-Length transcriptome analysis reveals candidate genes involved in terpenoid biosynthesis in Artemisia argyi. Front Genet. 2021;12:659962.
pubmed: 34239538
pmcid: 8258318
doi: 10.3389/fgene.2021.659962
Min X, Wang Q, Wei Z, Liu Z, Liu W. Full-length transcriptional analysis reveals the complex relationship of leaves and roots in responses to cold-drought combined stress in common vetch. Front Plant Sci. 2022;13:976094.
pubmed: 36212304
pmcid: 9538161
doi: 10.3389/fpls.2022.976094
Sun M, Huang D, Zhang A, Khan I, Yan H, Wang X, Zhang X, Zhang J, Huang L. Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing. BMC Plant Biol. 2020;20(1):323.
pubmed: 32640987
pmcid: 7346438
doi: 10.1186/s12870-020-02530-0
Jeon JH, Kim SC. Comparative analysis of the complete chloroplast genome sequences of three closely related East-Asian wild roses (Rosa sect. Synstylae; Rosaceae). Genes (Basel). 2019;10(1):23.
pubmed: 30609873
doi: 10.3390/genes10010023
Sharma P, Mehta G, Shefali, Muthusamy SK, Singh SK, Singh GP. Development and validation of heat-responsive candidate gene and miRNA gene based SSR markers to analysis genetic diversity in wheat for heat tolerance breeding. Mol Biol Rep. 2021;48(1):381–93.
pubmed: 33389541
doi: 10.1007/s11033-020-06059-1
Maanju S, Jasrotia P, Yadav SS, Sharma P, Kashyap PL, Kumar S, Jat MK, Singh GP. Genetic diversity and population structure analyses in barley (Hordeum vulgare) against corn-leaf aphid, Rhopalosiphum maidis (Fitch). Front Plant Sci. 2023;14:1188627.
pubmed: 37736612
pmcid: 10510198
doi: 10.3389/fpls.2023.1188627
Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR. Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS One. 2011;6(6):e21298.
pubmed: 21713003
pmcid: 3119692
doi: 10.1371/journal.pone.0021298
Kufel J, Diachenko N, Golisz A. Alternative splicing as a key player in the fine-tuning of the immunity response in Arabidopsis. Mol Plant Pathol. 2022;23(8):1226–38.
pubmed: 35567423
pmcid: 9276941
doi: 10.1111/mpp.13228
Wang L, Chen M, Zhu F, Fan T, Zhang J, Lo C. Alternative splicing is a Sorghum bicolor defense response to fungal infection. Planta. 2019;251(1):14.
pubmed: 31776670
doi: 10.1007/s00425-019-03309-w
Li Y, Guo Q, Liu P, Huang J, Zhang S, Yang G, Wu C, Zheng C, Yan K. Dual roles of the serine/arginine-rich splicing factor SR45a in promoting and interacting with nuclear cap-binding complex to modulate the salt-stress response in Arabidopsis. New Phytol. 2021;230(2):641–55.
pubmed: 33421141
doi: 10.1111/nph.17175
Zhang Y, Li D, Zhou R, Liu A, Wang L, Zhang Y, Gong H, Zhang X, You J. A collection of transcriptomic and proteomic datasets from sesame in response to salt stress. Data Brief. 2020;32:106096.
pubmed: 32817868
pmcid: 7426533
doi: 10.1016/j.dib.2020.106096
Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci. 2015;72(4):673–89.
pubmed: 25336153
doi: 10.1007/s00018-014-1767-0
Richter JA, Erban A, Kopka J, Zorb C. Metabolic contribution to salt stress in two maize hybrids with contrasting resistance. Plant Sci. 2015;233:107–15.
pubmed: 25711818
doi: 10.1016/j.plantsci.2015.01.006
Cohen SP, Liu H, Argueso CT, Pereira A, Vera Cruz C, Verdier V, Leach JE. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature. PLoS One. 2017;12(11):e0187625.
pubmed: 29107972
pmcid: 5673197
doi: 10.1371/journal.pone.0187625
Yang F, Wang H, Zhi C, Chen B, Zheng Y, Qiao L, Gao J, Pan Y, Cheng Z. Garlic volatile diallyl disulfide induced cucumber resistance to downy mildew. Int J Mol Sci. 2021;22(22):12328.
pubmed: 34830208
pmcid: 8625977
doi: 10.3390/ijms222212328
Zhang Y, Dong W, Zhao C, Ma H. Comparative transcriptome analysis of resistant and susceptible Kentucky bluegrass varieties in response to powdery mildew infection. BMC Plant Biol. 2022;22(1):509.
pubmed: 36319971
pmcid: 9628184
doi: 10.1186/s12870-022-03883-4
Shimizu S, Yamauchi Y, Ishikawa A. Photoperiod following inoculation of Arabidopsis with Pyricularia oryzae (syn. Magnaporthe oryzae) Influences on the plant-pathogen interaction. Int J Mol Sci. 2021;22(9):5004.
pubmed: 34066846
pmcid: 8125946
doi: 10.3390/ijms22095004
Park YJ, Kim NS, Sathasivam R, Chung YS, Park SU. Impact of copper treatment on phenylpropanoid biosynthesis in adventitious root culture of Althaea officinalis L. Prep Biochem Biotechnol. 2022;52(3):283–91.
pubmed: 34154516
doi: 10.1080/10826068.2021.1934697
Hong Y, Liu Q, Cao Y, Zhang Y, Chen D, Lou X, Cheng S, Cao L. The OsMPK15 negatively regulates Magnaporthe oryza and xoo disease resistance via SA and JA signaling pathway in rice. Front Plant Sci. 2019;10:752.
pubmed: 31293603
pmcid: 6598650
doi: 10.3389/fpls.2019.00752
Zhang A, Luo R, Li J, Miao R, An H, Yan X, Pang Q. Arabidopsis Glutathione-S-Transferases GSTF11 and GSTU20 function in aliphatic glucosinolate biosynthesis. Front Plant Sci. 2021;12:816233.
pubmed: 35145536
doi: 10.3389/fpls.2021.816233
Wang X, Chang L, Wang B, Wang D, Li P, Wang L, Yi X, Huang Q, Peng M, Guo A. Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol Cell Proteomics. 2013;12(8):2174–95.
pubmed: 23660471
pmcid: 3734578
doi: 10.1074/mcp.M112.022475
Ali A, Wu T, Xu Z, Riaz A, Alqudah AM, Iqbal MZ, Zhang H, Liao Y, Chen X, Liu Y, Mujtaba T, Zhou H, Wang W, Xu P, Wu X. Phytohormones and transcriptome analyses revealed the dynamics involved in spikelet abortion and inflorescence development in rice. Int J Mol Sci. 2022;23(14):7887.
pubmed: 35887236
pmcid: 9324563
doi: 10.3390/ijms23147887
Zhan Y, Wu T, Zhao X, Wang Z, Chen Y. Comparative physiological and full-length transcriptome analyses reveal the molecular mechanism of melatonin-mediated salt tolerance in okra (Abelmoschus esculentus L.). BMC Plant Biol. 2021;21(1):180.
pubmed: 33858330
pmcid: 8051126
doi: 10.1186/s12870-021-02957-z
Hu F, Zhang Y, Guo J. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. Plant Signal Behav. 2023;18(1):2215025.
pubmed: 37243677
pmcid: 10228403
doi: 10.1080/15592324.2023.2215025
Zhang Y, Ji X, Xian J, Wang Y, Peng Y. Morphological characterization and transcriptome analysis of leaf angle mutant bhlh112 in Maize [Zea mays L.]. Front Plant Sci. 2022;13:995815.
pubmed: 36275532
pmcid: 9585351
doi: 10.3389/fpls.2022.995815
Cui Q, Xie L, Dong C, Gao L, Shang Q. Stage-specific events in tomato graft formation and the regulatory effects of auxin and cytokinin. Plant Sci. 2021;304:110803.
pubmed: 33568302
doi: 10.1016/j.plantsci.2020.110803
Wang J, Lv P, Yan D, Zhang Z, Xu X, Wang T, Wang Y, Peng Z, Yu C, Gao Y, Duan L, Li R. Exogenous melatonin improves seed germination of Wheat (Triticum aestivum L.) under salt stress. Int J Mol Sci. 2022;23(15):8436.
pubmed: 35955571
pmcid: 9368970
doi: 10.3390/ijms23158436
Mehari TG, Hou Y, Xu Y, Umer MJ, Shiraku ML, Wang Y, Wang H, Peng R, Wei Y, Cai X, Zhou Z, Liu F. Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis. BMC Genomics. 2022;23(1):648.
pubmed: 36096725
pmcid: 9469605
doi: 10.1186/s12864-022-08876-z
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res. 2011;124(4):509–25.
pubmed: 21416314
doi: 10.1007/s10265-011-0412-3
Cacas JL, Pre M, Pizot M, Cissoko M, Diedhiou I, Jalloul A, Doumas P, Nicole M, Champion A. GhERF-IIb3 regulates the accumulation of jasmonate and leads to enhanced cotton resistance to blight disease. Mol Plant Pathol. 2017;18(6):825–36.
pubmed: 27291786
doi: 10.1111/mpp.12445
Nabi RBS, Rolly NK, Tayade R, Khan M, Shahid M, Yun BW. Enhanced resistance of AtbZIP62 against Pseudomonas syringae pv. tomato suggests negative regulation of plant basal defense and systemic acquired resistance by AtbZIP62 transcription factor. Int J Mol Sci. 2021;22(21):11541.
pubmed: 34768971
pmcid: 8584143
doi: 10.3390/ijms222111541
Jahan MA, Harris B, Lowery M, Infante AM, Percifield RJ, Kovinich N. Glyceollin transcription factor GmMYB29A2 regulates soybean resistance to Phytophthora sojae. Plant Physiol. 2020;183(2):530–46.
pubmed: 32209590
pmcid: 7271783
doi: 10.1104/pp.19.01293
Gao YF, Liu JK, Yang FM, Zhang GY, Wang D, Zhang L, Ou YB, Yao YA. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant. 2020;168(1):98–117.
pubmed: 31017672
doi: 10.1111/ppl.12978
Song N, Ma L, Wang W, Sun H, Wang L, Baldwin IT, Wu J. An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. J Exp Bot. 2019;70(20):5895–908.
pubmed: 31294452
pmcid: 6812721
doi: 10.1093/jxb/erz327
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.
pubmed: 18516045
doi: 10.1038/nmeth.1226
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–8.
pubmed: 19023044
doi: 10.1126/science.1162986
Foissac S, Sammeth M. ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res. 2007;35(Web Server issue):W297-9.
pubmed: 17485470
pmcid: 1933205
doi: 10.1093/nar/gkm311
Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35(Web Server issue):W345-9.
pubmed: 17631615
pmcid: 1933232
doi: 10.1093/nar/gkm391
Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166.
pubmed: 23892401
pmcid: 3783192
doi: 10.1093/nar/gkt646
Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41(6):e74.
pubmed: 23335781
pmcid: 3616698
doi: 10.1093/nar/gkt006
Wang H, Zhang Y, Feng X, Peng F, Mazoor MA, Zhang Y, Zhao Y, Han W, Lu J, Cao Y, Cai Y. Analysis of the beta-Glucosidase family reveals genes involved in the lignification of stone cells in Chinese white pear (Pyrus bretschneideri Rehd.). Front Plant Sci. 2022;13:852001.
pubmed: 35620693
pmcid: 9127867
doi: 10.3389/fpls.2022.852001
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.
pubmed: 11846609
doi: 10.1006/meth.2001.1262
Aeineh M, Najafian S, Hosseinifarahi M. Evaluation of pharmaceutical compounds at vegetative and reproductive growth stages of Marrubium vulgare, a medicinal plant to cleanse the body. Nat Prod Res. 2023:1–5. https://doi.org/10.1080/14786419.2023.2245116 .