The nucleolar shell provides anchoring sites for DNA untwisting.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
23 Jan 2024
Historique:
received: 18 08 2023
accepted: 28 12 2023
medline: 24 1 2024
pubmed: 24 1 2024
entrez: 23 1 2024
Statut: epublish

Résumé

DNA underwinding (untwisting) is a crucial step in transcriptional activation. DNA underwinding occurs between the site where torque is generated by RNA polymerase (RNAP) and the site where the axial rotation of DNA is constrained. However, what constrains DNA axial rotation in the nucleus is yet unknown. Here, we show that the anchorage to the nuclear protein condensates constrains DNA axial rotation for DNA underwinding in the nucleolus. In situ super-resolution imaging of underwound DNA reveal that underwound DNA accumulates in the nucleolus, a nuclear condensate with a core-shell structure. Specifically, underwound DNA is distributed in the nucleolar core owing to RNA polymerase I (RNAPI) activities. Furthermore, underwound DNA in the core decreases when nucleolar shell components are prevented from binding to their recognition structure, G-quadruplex (G4). Taken together, these results suggest that the nucleolar shell provides anchoring sites that constrain DNA axial rotation for RNAPI-driven DNA underwinding in the core. Our findings will contribute to understanding how nuclear protein condensates make up constraints for the site-specific regulation of DNA underwinding and transcription.

Identifiants

pubmed: 38263258
doi: 10.1038/s42003-023-05750-w
pii: 10.1038/s42003-023-05750-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

83

Subventions

Organisme : MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
ID : JPMJCR2023
Organisme : MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
ID : JPMJCR22L5
Organisme : Ministry of Education, Culture, Sports, Science and Technology (MEXT)
ID : JP20K20180
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP23KJ1255
Organisme : MEXT | Japan Science and Technology Agency (JST)
ID : JPMJSP2110

Informations de copyright

© 2024. The Author(s).

Références

Kim, E., Gonzalez, A. M., Pradhan, B., van der Torre, J. & Dekker, C. Condensin-driven loop extrusion on supercoiled DNA. Nat. Struct. Mol. Biol. 29, 719–727 (2022).
pubmed: 35835864 doi: 10.1038/s41594-022-00802-x
Guo, M. S., Kawamura, R., Littlehale, M. L., Marko, J. F. & Laub, M. T. High-resolution, genome-wide mapping of positive supercoiling in chromosomes. Elife 10, e67236 (2021).
pubmed: 34279217 pmcid: 8360656 doi: 10.7554/eLife.67236
Jha, R. K., Levens, D. & Kouzine, F. Mechanical determinants of chromatin topology and gene expression. Nucleus 13, 94–115 (2022).
pubmed: 35220881 pmcid: 8890386 doi: 10.1080/19491034.2022.2038868
Kouzine, F., Liu, J., Sanford, S., Chung, H. J. & Levens, D. The dynamic response of upstream DNA to transcription-generated torsional stress. Nat. Struct. Mol. Biol. 11, 1092–1100 (2004).
pubmed: 15502847 doi: 10.1038/nsmb848
Kouzine, F., Sanford, S., Elisha-Feil, Z. & Levens, D. The functional response of upstream DNA to dynamic supercoiling in vivo. Nat. Struct. Mol. Biol. 15, 146–154 (2008).
pubmed: 18193062 doi: 10.1038/nsmb.1372
Johnstone, C. P. & Galloway, K. E. Supercoiling-mediated feedback rapidly couples and tunes transcription. Cell Rep. 41, 111492 (2022).
pubmed: 36261020 pmcid: 9624111 doi: 10.1016/j.celrep.2022.111492
Shi, Y. J. et al. DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9. Mol. Cell 82, 4160–4175.e6 (2022).
pubmed: 36272409 doi: 10.1016/j.molcel.2022.09.032
Fogg, J. M., Judge, A. K., Stricker, E., Chan, H. L. & Zechiedrich, L. Supercoiling and looping promote DNA base accessibility and coordination among distant sites. Nat. Commun. 12, 5683 (2021).
pubmed: 34584096 pmcid: 8478907 doi: 10.1038/s41467-021-25936-2
Zhang, C., Liu, H. H., Zheng, K. W., Hao, Y. H. & Tan, Z. DNA G-quadruplex formation in response to remote downstream transcription activity: long-range sensing and signal transducing in DNA double helix. Nucleic Acids Res. 41, 7144–7152 (2013).
pubmed: 23716646 pmcid: 3737545 doi: 10.1093/nar/gkt443
Lv, B., Li, D., Zhang, H., Lee, J. Y. & Li, T. DNA gyrase-driven generation of a G-quadruplex from plasmid DNA. Chem. Commun. 49, 8317–8319 (2013).
doi: 10.1039/c3cc44675a
Ganji, M., Kim, S. H., van der Torre, J., Abbondanzieri, E. & Dekker, C. Intercalation-based single-molecule fluorescence assay to study DNA supercoil dynamics. Nano Lett. 16, 4699–4707 (2016).
pubmed: 27356180 doi: 10.1021/acs.nanolett.6b02213
Corless, S. & Gilbert, N. Effects of DNA supercoiling on chromatin architecture. Biophys. Rev. 8, 245–258 (2016).
pubmed: 27738453 pmcid: 5039215 doi: 10.1007/s12551-016-0210-1
Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).
pubmed: 2823250 pmcid: 299221 doi: 10.1073/pnas.84.20.7024
Ma, J., Bai, L. & Wang, M. D. Transcription under torsion. Science 340, 1580–1583 (2013).
pubmed: 23812716 pmcid: 5657242 doi: 10.1126/science.1235441
Chong, S., Chen, C., Ge, H. & Xie, X. S. Mechanism of transcriptional bursting in bacteria. Cell 158, 314–326 (2014).
pubmed: 25036631 pmcid: 4105854 doi: 10.1016/j.cell.2014.05.038
Stupina, V. A. & Wang, J. C. DNA axial rotation and the merge of oppositely supercoiled DNA domains in Escherichia coli: effects of DNA bends. Proc. Natl Acad. Sci. USA. 101, 8608–8613 (2004).
pubmed: 15173581 pmcid: 423242 doi: 10.1073/pnas.0402849101
Leng, F., Chen, B. & Dunlap, D. D. Dividing a supercoiled DNA molecule into two independent topological domains. Proc. Natl Acad. Sci. USA 108, 19973–19978 (2011).
pubmed: 22123985 pmcid: 3250177 doi: 10.1073/pnas.1109854108
Yan, Y., Ding, Y., Leng, F., Dunlap, D. & Finzi, L. Protein-mediated loops in supercoiled DNA create large topological domains. Nucleic Acids Res. 46, 4417–4424 (2018).
pubmed: 29538766 pmcid: 5961096 doi: 10.1093/nar/gky153
Neguembor, M. V. et al. Transcription-mediated supercoiling regulates genome folding and loop formation. Mol. Cell 81, 3065–3081.e12 (2021).
pubmed: 34297911 pmcid: 9482096 doi: 10.1016/j.molcel.2021.06.009
Racko, D., Benedetti, F., Dorier, J. & Stasiak, A. Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes. Nucleic Acids Res. 46, 1648–1660 (2018).
pubmed: 29140466 doi: 10.1093/nar/gkx1123
Naughton, C. et al. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat. Struct. Mol. Biol. 20, 387–395 (2013).
pubmed: 23416946 pmcid: 3689368 doi: 10.1038/nsmb.2509
Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).
pubmed: 32684431 pmcid: 7572565 doi: 10.1016/j.tibs.2020.06.007
Tan, T. et al. Negative supercoils regulate meiotic crossover patterns in budding yeast. Nucleic Acids Res. 50, 10418–10435 (2022).
pubmed: 36107772 pmcid: 9561271 doi: 10.1093/nar/gkac786
Matsumoto, K. & Hirose, S. Visualization of unconstrained negative supercoils of DNA on polytene chromosomes of Drosophila. J. Cell Sci. 117, 3797–3805 (2004).
pubmed: 15252118 doi: 10.1242/jcs.01225
Sinden, R. R., Carlson, J. O. & Pettijohn, D. E. Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: analogous measurements in insect and human cells. Cell 21, 773–783 (1980).
pubmed: 6254668 doi: 10.1016/0092-8674(80)90440-7
Bermúdez, I., García-Martínez, J., Pérez-Ortín, J. E. & Roca, J. A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding. Nucleic Acids Res. 38, e182 (2010).
pubmed: 20685815 pmcid: 2965259 doi: 10.1093/nar/gkq687
Visser, B. J. et al. Psoralen mapping reveals a bacterial genome supercoiling landscape dominated by transcription. Nucleic Acids Res. 50, 4436–4449 (2022).
pubmed: 35420137 pmcid: 9071471 doi: 10.1093/nar/gkac244
Krassovsky, K., Ghosh, R. P. & Meyer, B. J. Genome-wide profiling reveals functional interplay of DNA sequence composition, transcriptional activity, and nucleosome positioning in driving DNA supercoiling and helix destabilization in C. elegans. Genome Res. 31, 1187–1202 (2021).
pubmed: 34168009 pmcid: 8256864 doi: 10.1101/gr.270082.120
Teves, S. S. & Henikoff, S. Transcription-generated torsional stress destabilizes nucleosomes. Nat. Struct. Mol. Biol. 21, 88–94 (2013).
pubmed: 24317489 pmcid: 3947361 doi: 10.1038/nsmb.2723
Herrero-Ruiz, A. et al. Topoisomerase IIα represses transcription by enforcing promoter-proximal pausing. Cell Rep. 35, 108977 (2021).
pubmed: 33852840 pmcid: 8052185 doi: 10.1016/j.celrep.2021.108977
Aw, J. G. A. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62, 603–617 (2016).
pubmed: 27184079 doi: 10.1016/j.molcel.2016.04.028
Villeponteau, B. & Martinson, H. G. Gamma rays and bleomycin nick DNA and reverse the DNase I sensitivity of beta-globin gene chromatin in vivo. Mol. Cell. Biol. 7, 1917–1924 (1987).
pubmed: 2439900 pmcid: 365296
Estandarte, A. K., Botchway, S., Lynch, C., Yusuf, M. & Robinson, I. The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes. Sci. Rep. 6, 31417 (2016).
pubmed: 27526631 pmcid: 4985626 doi: 10.1038/srep31417
Suto, R. K. et al. Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J. Mol. Biol. 326, 371–380 (2003).
pubmed: 12559907 doi: 10.1016/S0022-2836(02)01407-9
Pommier, Y., Sun, Y., Huang, S. Y. N. & Nitiss, J. L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17, 703–721 (2016).
pubmed: 27649880 pmcid: 9248348 doi: 10.1038/nrm.2016.111
Pommier, Y., Nussenzweig, A., Takeda, S. & Austin, C. Human topoisomerases and their roles in genome stability and organization. Nat. Rev. Mol. Cell Biol. 23, 407–427 (2022).
pubmed: 35228717 pmcid: 8883456 doi: 10.1038/s41580-022-00452-3
Girstun, A., Ishikawa, T., Kowalska-Loth, B., Czubaty, A. & Staron, K. Subnuclear localization of human topoisomerase I. J. Cell. Biochem. 118, 407–419 (2017).
pubmed: 27428351 doi: 10.1002/jcb.25654
Ogawa, Y. & Imamoto, N. Methods to separate nuclear soluble fractions reflecting localizations in living cells. iScience 24, 103503 (2021).
pubmed: 34934922 pmcid: 8661538 doi: 10.1016/j.isci.2021.103503
Collins, I., Weber, A. & Levens, D. Transcriptional consequences of topoisomerase inhibition. Mol. Cell. Biol. 21, 8437–8451 (2001).
pubmed: 11713279 pmcid: 100007 doi: 10.1128/MCB.21.24.8437-8451.2001
Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).
pubmed: 32873929 doi: 10.1038/s41580-020-0272-6
Wen, Y. R. et al. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol. Cell 76, 767–783.e11 (2019).
doi: 10.1016/j.molcel.2019.08.014
Clément, M. J. et al. The chemotherapeutic agent CX-5461 irreversibly blocks RNA polymerase I initiation and promoter release to cause nucleolar disruption, DNA damage and cell inviability. NAR Cancer 2, zcaa032 (2020).
doi: 10.1093/narcan/zcaa032
Chiarella, S. et al. Nucleophosmin mutations alter its nucleolar localization by impairing G-quadruplex binding at ribosomal DNA. Nucleic Acids Res. 41, 3228–3239 (2013).
pubmed: 23328624 pmcid: 3597674 doi: 10.1093/nar/gkt001
Varshney, D., Spiegel, J., Zyner, K., Tannahill, D. & Balasubramanian, S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 21, 459–474 (2020).
pubmed: 32313204 pmcid: 7115845 doi: 10.1038/s41580-020-0236-x
Mitrea, D. M. et al. Structural polymorphism in the N-terminal oligomerization domain of NPM1. Proc. Natl Acad. Sci. USA 111, 4466–4471 (2014).
pubmed: 24616519 pmcid: 3970533 doi: 10.1073/pnas.1321007111
Mitrea, D. M. et al. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation. Nat. Commun. 9, 842 (2018).
pubmed: 29483575 pmcid: 5827731 doi: 10.1038/s41467-018-03255-3
Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).
pubmed: 27212236 pmcid: 5127388 doi: 10.1016/j.cell.2016.04.047
Gallo, A. et al. Structure of nucleophosmin DNA-binding domain and analysis of its complex with a G-quadruplex sequence from the c-MYC promoter. J. Biol. Chem. 287, 26539–26548 (2012).
pubmed: 22707729 pmcid: 3410995 doi: 10.1074/jbc.M112.371013
Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).
pubmed: 29930094 pmcid: 6543815 doi: 10.1126/science.aar4199
Lu, Y. et al. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22, 453–464 (2020).
pubmed: 32203417 doi: 10.1038/s41556-020-0485-0
Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).
pubmed: 30449618 doi: 10.1016/j.cell.2018.10.042
Stefanovsky, V. Y., Pelletier, G., Bazett-Jones, D. P., Crane-Robinson, C. & Moss, T. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules. Nucleic Acids Res. 29, 3241–3247 (2001).
pubmed: 11470882 pmcid: 55825 doi: 10.1093/nar/29.15.3241
Xia, Y. et al. Transmission of dynamic supercoiling in linear and multi-way branched DNAs and its regulation revealed by a fluorescent G-quadruplex torsion sensor. Nucleic Acids Res. 46, 7418–7424 (2018).
pubmed: 29982790 pmcid: 6101514 doi: 10.1093/nar/gky534
Lisica, A. et al. Mechanisms of backtrack recovery by RNA polymerases I and II. Proc. Natl Acad. Sci. USA 113, 2946–2951 (2016).
pubmed: 26929337 pmcid: 4801279 doi: 10.1073/pnas.1517011113
Landick, R., Strick, T. & Wang, J. RNA Polymerases as Molecular Motors: On the Road. (Royal Society of Chemistry, 2021).
Ma, J. et al. Transcription factor regulation of RNA polymerase’s torque generation capacity. Proc. Natl Acad. Sci. USA 116, 2583–2588 (2019).
pubmed: 30635423 pmcid: 6377492 doi: 10.1073/pnas.1807031116
Diesch, J. et al. Changes in long-range rDNA-genomic interactions associate with altered RNA polymerase II gene programs during malignant transformation. Commun. Biol. 2, 39 (2019).
pubmed: 30701204 pmcid: 6349880 doi: 10.1038/s42003-019-0284-y
Morotomi-Yano, K. & Yano, K. Nucleolar translocation of human DNA topoisomerase II by ATP depletion and its disruption by the RNA polymerase I inhibitor BMH-21. Sci. Rep. 11, 21533 (2021).
pubmed: 34728715 pmcid: 8563764 doi: 10.1038/s41598-021-00958-4
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Kurihara, M. et al. Genomic profiling by ALaP-Seq reveals transcriptional regulation by PML bodies through DNMT3A exclusion. Mol. Cell 78, 493–505.e8 (2020).
pubmed: 32353257 doi: 10.1016/j.molcel.2020.04.004
Ollion, J., Cochennec, J., Loll, F., Escudé, C. & Boudier, T. TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29, 1840–1841 (2013).
pubmed: 23681123 pmcid: 3702251 doi: 10.1093/bioinformatics/btt276
Brázda, V. et al. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 35, 3493–3495 (2019).
pubmed: 30721922 pmcid: 6748775 doi: 10.1093/bioinformatics/btz087
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
pubmed: 32015543 pmcid: 7056644 doi: 10.1038/s41592-019-0686-2

Auteurs

Jumpei Fukute (J)

Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan.
Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan.

Koichiro Maki (K)

Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan. maki@infront.kyoto-u.ac.jp.
Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan. maki@infront.kyoto-u.ac.jp.
Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan. maki@infront.kyoto-u.ac.jp.
Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan. maki@infront.kyoto-u.ac.jp.

Taiji Adachi (T)

Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan.
Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan.
Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan.
Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.

Classifications MeSH