The nucleolar shell provides anchoring sites for DNA untwisting.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
23 Jan 2024
23 Jan 2024
Historique:
received:
18
08
2023
accepted:
28
12
2023
medline:
24
1
2024
pubmed:
24
1
2024
entrez:
23
1
2024
Statut:
epublish
Résumé
DNA underwinding (untwisting) is a crucial step in transcriptional activation. DNA underwinding occurs between the site where torque is generated by RNA polymerase (RNAP) and the site where the axial rotation of DNA is constrained. However, what constrains DNA axial rotation in the nucleus is yet unknown. Here, we show that the anchorage to the nuclear protein condensates constrains DNA axial rotation for DNA underwinding in the nucleolus. In situ super-resolution imaging of underwound DNA reveal that underwound DNA accumulates in the nucleolus, a nuclear condensate with a core-shell structure. Specifically, underwound DNA is distributed in the nucleolar core owing to RNA polymerase I (RNAPI) activities. Furthermore, underwound DNA in the core decreases when nucleolar shell components are prevented from binding to their recognition structure, G-quadruplex (G4). Taken together, these results suggest that the nucleolar shell provides anchoring sites that constrain DNA axial rotation for RNAPI-driven DNA underwinding in the core. Our findings will contribute to understanding how nuclear protein condensates make up constraints for the site-specific regulation of DNA underwinding and transcription.
Identifiants
pubmed: 38263258
doi: 10.1038/s42003-023-05750-w
pii: 10.1038/s42003-023-05750-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
83Subventions
Organisme : MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
ID : JPMJCR2023
Organisme : MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
ID : JPMJCR22L5
Organisme : Ministry of Education, Culture, Sports, Science and Technology (MEXT)
ID : JP20K20180
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP23KJ1255
Organisme : MEXT | Japan Science and Technology Agency (JST)
ID : JPMJSP2110
Informations de copyright
© 2024. The Author(s).
Références
Kim, E., Gonzalez, A. M., Pradhan, B., van der Torre, J. & Dekker, C. Condensin-driven loop extrusion on supercoiled DNA. Nat. Struct. Mol. Biol. 29, 719–727 (2022).
pubmed: 35835864
doi: 10.1038/s41594-022-00802-x
Guo, M. S., Kawamura, R., Littlehale, M. L., Marko, J. F. & Laub, M. T. High-resolution, genome-wide mapping of positive supercoiling in chromosomes. Elife 10, e67236 (2021).
pubmed: 34279217
pmcid: 8360656
doi: 10.7554/eLife.67236
Jha, R. K., Levens, D. & Kouzine, F. Mechanical determinants of chromatin topology and gene expression. Nucleus 13, 94–115 (2022).
pubmed: 35220881
pmcid: 8890386
doi: 10.1080/19491034.2022.2038868
Kouzine, F., Liu, J., Sanford, S., Chung, H. J. & Levens, D. The dynamic response of upstream DNA to transcription-generated torsional stress. Nat. Struct. Mol. Biol. 11, 1092–1100 (2004).
pubmed: 15502847
doi: 10.1038/nsmb848
Kouzine, F., Sanford, S., Elisha-Feil, Z. & Levens, D. The functional response of upstream DNA to dynamic supercoiling in vivo. Nat. Struct. Mol. Biol. 15, 146–154 (2008).
pubmed: 18193062
doi: 10.1038/nsmb.1372
Johnstone, C. P. & Galloway, K. E. Supercoiling-mediated feedback rapidly couples and tunes transcription. Cell Rep. 41, 111492 (2022).
pubmed: 36261020
pmcid: 9624111
doi: 10.1016/j.celrep.2022.111492
Shi, Y. J. et al. DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9. Mol. Cell 82, 4160–4175.e6 (2022).
pubmed: 36272409
doi: 10.1016/j.molcel.2022.09.032
Fogg, J. M., Judge, A. K., Stricker, E., Chan, H. L. & Zechiedrich, L. Supercoiling and looping promote DNA base accessibility and coordination among distant sites. Nat. Commun. 12, 5683 (2021).
pubmed: 34584096
pmcid: 8478907
doi: 10.1038/s41467-021-25936-2
Zhang, C., Liu, H. H., Zheng, K. W., Hao, Y. H. & Tan, Z. DNA G-quadruplex formation in response to remote downstream transcription activity: long-range sensing and signal transducing in DNA double helix. Nucleic Acids Res. 41, 7144–7152 (2013).
pubmed: 23716646
pmcid: 3737545
doi: 10.1093/nar/gkt443
Lv, B., Li, D., Zhang, H., Lee, J. Y. & Li, T. DNA gyrase-driven generation of a G-quadruplex from plasmid DNA. Chem. Commun. 49, 8317–8319 (2013).
doi: 10.1039/c3cc44675a
Ganji, M., Kim, S. H., van der Torre, J., Abbondanzieri, E. & Dekker, C. Intercalation-based single-molecule fluorescence assay to study DNA supercoil dynamics. Nano Lett. 16, 4699–4707 (2016).
pubmed: 27356180
doi: 10.1021/acs.nanolett.6b02213
Corless, S. & Gilbert, N. Effects of DNA supercoiling on chromatin architecture. Biophys. Rev. 8, 245–258 (2016).
pubmed: 27738453
pmcid: 5039215
doi: 10.1007/s12551-016-0210-1
Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).
pubmed: 2823250
pmcid: 299221
doi: 10.1073/pnas.84.20.7024
Ma, J., Bai, L. & Wang, M. D. Transcription under torsion. Science 340, 1580–1583 (2013).
pubmed: 23812716
pmcid: 5657242
doi: 10.1126/science.1235441
Chong, S., Chen, C., Ge, H. & Xie, X. S. Mechanism of transcriptional bursting in bacteria. Cell 158, 314–326 (2014).
pubmed: 25036631
pmcid: 4105854
doi: 10.1016/j.cell.2014.05.038
Stupina, V. A. & Wang, J. C. DNA axial rotation and the merge of oppositely supercoiled DNA domains in Escherichia coli: effects of DNA bends. Proc. Natl Acad. Sci. USA. 101, 8608–8613 (2004).
pubmed: 15173581
pmcid: 423242
doi: 10.1073/pnas.0402849101
Leng, F., Chen, B. & Dunlap, D. D. Dividing a supercoiled DNA molecule into two independent topological domains. Proc. Natl Acad. Sci. USA 108, 19973–19978 (2011).
pubmed: 22123985
pmcid: 3250177
doi: 10.1073/pnas.1109854108
Yan, Y., Ding, Y., Leng, F., Dunlap, D. & Finzi, L. Protein-mediated loops in supercoiled DNA create large topological domains. Nucleic Acids Res. 46, 4417–4424 (2018).
pubmed: 29538766
pmcid: 5961096
doi: 10.1093/nar/gky153
Neguembor, M. V. et al. Transcription-mediated supercoiling regulates genome folding and loop formation. Mol. Cell 81, 3065–3081.e12 (2021).
pubmed: 34297911
pmcid: 9482096
doi: 10.1016/j.molcel.2021.06.009
Racko, D., Benedetti, F., Dorier, J. & Stasiak, A. Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes. Nucleic Acids Res. 46, 1648–1660 (2018).
pubmed: 29140466
doi: 10.1093/nar/gkx1123
Naughton, C. et al. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat. Struct. Mol. Biol. 20, 387–395 (2013).
pubmed: 23416946
pmcid: 3689368
doi: 10.1038/nsmb.2509
Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).
pubmed: 32684431
pmcid: 7572565
doi: 10.1016/j.tibs.2020.06.007
Tan, T. et al. Negative supercoils regulate meiotic crossover patterns in budding yeast. Nucleic Acids Res. 50, 10418–10435 (2022).
pubmed: 36107772
pmcid: 9561271
doi: 10.1093/nar/gkac786
Matsumoto, K. & Hirose, S. Visualization of unconstrained negative supercoils of DNA on polytene chromosomes of Drosophila. J. Cell Sci. 117, 3797–3805 (2004).
pubmed: 15252118
doi: 10.1242/jcs.01225
Sinden, R. R., Carlson, J. O. & Pettijohn, D. E. Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: analogous measurements in insect and human cells. Cell 21, 773–783 (1980).
pubmed: 6254668
doi: 10.1016/0092-8674(80)90440-7
Bermúdez, I., García-Martínez, J., Pérez-Ortín, J. E. & Roca, J. A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding. Nucleic Acids Res. 38, e182 (2010).
pubmed: 20685815
pmcid: 2965259
doi: 10.1093/nar/gkq687
Visser, B. J. et al. Psoralen mapping reveals a bacterial genome supercoiling landscape dominated by transcription. Nucleic Acids Res. 50, 4436–4449 (2022).
pubmed: 35420137
pmcid: 9071471
doi: 10.1093/nar/gkac244
Krassovsky, K., Ghosh, R. P. & Meyer, B. J. Genome-wide profiling reveals functional interplay of DNA sequence composition, transcriptional activity, and nucleosome positioning in driving DNA supercoiling and helix destabilization in C. elegans. Genome Res. 31, 1187–1202 (2021).
pubmed: 34168009
pmcid: 8256864
doi: 10.1101/gr.270082.120
Teves, S. S. & Henikoff, S. Transcription-generated torsional stress destabilizes nucleosomes. Nat. Struct. Mol. Biol. 21, 88–94 (2013).
pubmed: 24317489
pmcid: 3947361
doi: 10.1038/nsmb.2723
Herrero-Ruiz, A. et al. Topoisomerase IIα represses transcription by enforcing promoter-proximal pausing. Cell Rep. 35, 108977 (2021).
pubmed: 33852840
pmcid: 8052185
doi: 10.1016/j.celrep.2021.108977
Aw, J. G. A. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62, 603–617 (2016).
pubmed: 27184079
doi: 10.1016/j.molcel.2016.04.028
Villeponteau, B. & Martinson, H. G. Gamma rays and bleomycin nick DNA and reverse the DNase I sensitivity of beta-globin gene chromatin in vivo. Mol. Cell. Biol. 7, 1917–1924 (1987).
pubmed: 2439900
pmcid: 365296
Estandarte, A. K., Botchway, S., Lynch, C., Yusuf, M. & Robinson, I. The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes. Sci. Rep. 6, 31417 (2016).
pubmed: 27526631
pmcid: 4985626
doi: 10.1038/srep31417
Suto, R. K. et al. Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J. Mol. Biol. 326, 371–380 (2003).
pubmed: 12559907
doi: 10.1016/S0022-2836(02)01407-9
Pommier, Y., Sun, Y., Huang, S. Y. N. & Nitiss, J. L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17, 703–721 (2016).
pubmed: 27649880
pmcid: 9248348
doi: 10.1038/nrm.2016.111
Pommier, Y., Nussenzweig, A., Takeda, S. & Austin, C. Human topoisomerases and their roles in genome stability and organization. Nat. Rev. Mol. Cell Biol. 23, 407–427 (2022).
pubmed: 35228717
pmcid: 8883456
doi: 10.1038/s41580-022-00452-3
Girstun, A., Ishikawa, T., Kowalska-Loth, B., Czubaty, A. & Staron, K. Subnuclear localization of human topoisomerase I. J. Cell. Biochem. 118, 407–419 (2017).
pubmed: 27428351
doi: 10.1002/jcb.25654
Ogawa, Y. & Imamoto, N. Methods to separate nuclear soluble fractions reflecting localizations in living cells. iScience 24, 103503 (2021).
pubmed: 34934922
pmcid: 8661538
doi: 10.1016/j.isci.2021.103503
Collins, I., Weber, A. & Levens, D. Transcriptional consequences of topoisomerase inhibition. Mol. Cell. Biol. 21, 8437–8451 (2001).
pubmed: 11713279
pmcid: 100007
doi: 10.1128/MCB.21.24.8437-8451.2001
Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).
pubmed: 32873929
doi: 10.1038/s41580-020-0272-6
Wen, Y. R. et al. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol. Cell 76, 767–783.e11 (2019).
doi: 10.1016/j.molcel.2019.08.014
Clément, M. J. et al. The chemotherapeutic agent CX-5461 irreversibly blocks RNA polymerase I initiation and promoter release to cause nucleolar disruption, DNA damage and cell inviability. NAR Cancer 2, zcaa032 (2020).
doi: 10.1093/narcan/zcaa032
Chiarella, S. et al. Nucleophosmin mutations alter its nucleolar localization by impairing G-quadruplex binding at ribosomal DNA. Nucleic Acids Res. 41, 3228–3239 (2013).
pubmed: 23328624
pmcid: 3597674
doi: 10.1093/nar/gkt001
Varshney, D., Spiegel, J., Zyner, K., Tannahill, D. & Balasubramanian, S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 21, 459–474 (2020).
pubmed: 32313204
pmcid: 7115845
doi: 10.1038/s41580-020-0236-x
Mitrea, D. M. et al. Structural polymorphism in the N-terminal oligomerization domain of NPM1. Proc. Natl Acad. Sci. USA 111, 4466–4471 (2014).
pubmed: 24616519
pmcid: 3970533
doi: 10.1073/pnas.1321007111
Mitrea, D. M. et al. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation. Nat. Commun. 9, 842 (2018).
pubmed: 29483575
pmcid: 5827731
doi: 10.1038/s41467-018-03255-3
Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).
pubmed: 27212236
pmcid: 5127388
doi: 10.1016/j.cell.2016.04.047
Gallo, A. et al. Structure of nucleophosmin DNA-binding domain and analysis of its complex with a G-quadruplex sequence from the c-MYC promoter. J. Biol. Chem. 287, 26539–26548 (2012).
pubmed: 22707729
pmcid: 3410995
doi: 10.1074/jbc.M112.371013
Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).
pubmed: 29930094
pmcid: 6543815
doi: 10.1126/science.aar4199
Lu, Y. et al. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22, 453–464 (2020).
pubmed: 32203417
doi: 10.1038/s41556-020-0485-0
Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).
pubmed: 30449618
doi: 10.1016/j.cell.2018.10.042
Stefanovsky, V. Y., Pelletier, G., Bazett-Jones, D. P., Crane-Robinson, C. & Moss, T. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules. Nucleic Acids Res. 29, 3241–3247 (2001).
pubmed: 11470882
pmcid: 55825
doi: 10.1093/nar/29.15.3241
Xia, Y. et al. Transmission of dynamic supercoiling in linear and multi-way branched DNAs and its regulation revealed by a fluorescent G-quadruplex torsion sensor. Nucleic Acids Res. 46, 7418–7424 (2018).
pubmed: 29982790
pmcid: 6101514
doi: 10.1093/nar/gky534
Lisica, A. et al. Mechanisms of backtrack recovery by RNA polymerases I and II. Proc. Natl Acad. Sci. USA 113, 2946–2951 (2016).
pubmed: 26929337
pmcid: 4801279
doi: 10.1073/pnas.1517011113
Landick, R., Strick, T. & Wang, J. RNA Polymerases as Molecular Motors: On the Road. (Royal Society of Chemistry, 2021).
Ma, J. et al. Transcription factor regulation of RNA polymerase’s torque generation capacity. Proc. Natl Acad. Sci. USA 116, 2583–2588 (2019).
pubmed: 30635423
pmcid: 6377492
doi: 10.1073/pnas.1807031116
Diesch, J. et al. Changes in long-range rDNA-genomic interactions associate with altered RNA polymerase II gene programs during malignant transformation. Commun. Biol. 2, 39 (2019).
pubmed: 30701204
pmcid: 6349880
doi: 10.1038/s42003-019-0284-y
Morotomi-Yano, K. & Yano, K. Nucleolar translocation of human DNA topoisomerase II by ATP depletion and its disruption by the RNA polymerase I inhibitor BMH-21. Sci. Rep. 11, 21533 (2021).
pubmed: 34728715
pmcid: 8563764
doi: 10.1038/s41598-021-00958-4
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Kurihara, M. et al. Genomic profiling by ALaP-Seq reveals transcriptional regulation by PML bodies through DNMT3A exclusion. Mol. Cell 78, 493–505.e8 (2020).
pubmed: 32353257
doi: 10.1016/j.molcel.2020.04.004
Ollion, J., Cochennec, J., Loll, F., Escudé, C. & Boudier, T. TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29, 1840–1841 (2013).
pubmed: 23681123
pmcid: 3702251
doi: 10.1093/bioinformatics/btt276
Brázda, V. et al. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 35, 3493–3495 (2019).
pubmed: 30721922
pmcid: 6748775
doi: 10.1093/bioinformatics/btz087
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
pubmed: 32015543
pmcid: 7056644
doi: 10.1038/s41592-019-0686-2