Programmed disassembly of a microtubule-based membrane protrusion network coordinates 3D epithelial morphogenesis in Drosophila.

Cellular Protrusion Epithelial Morphogenesis Microtubule Dynamics Non-Centrosomal Microtubule Organizing Center Three-Dimensional Morphogenesis

Journal

The EMBO journal
ISSN: 1460-2075
Titre abrégé: EMBO J
Pays: England
ID NLM: 8208664

Informations de publication

Date de publication:
23 Jan 2024
Historique:
received: 01 03 2023
accepted: 18 12 2023
revised: 14 12 2023
medline: 24 1 2024
pubmed: 24 1 2024
entrez: 23 1 2024
Statut: aheadofprint

Résumé

Comprehensive analysis of cellular dynamics during the process of morphogenesis is fundamental to understanding the principles of animal development. Despite recent advancements in light microscopy, how successive cell shape changes lead to complex three-dimensional tissue morphogenesis is still largely unresolved. Using in vivo live imaging of Drosophila wing development, we have studied unique cellular structures comprising a microtubule-based membrane protrusion network. This network, which we name here the Interplanar Amida Network (IPAN), links the two wing epithelium leaflets. Initially, the IPAN sustains cell-cell contacts between the two layers of the wing epithelium through basal protrusions. Subsequent disassembly of the IPAN involves loss of these contacts, with concomitant degeneration of aligned microtubules. These processes are both autonomously and non-autonomously required for mitosis, leading to coordinated tissue proliferation between two wing epithelia. Our findings further reveal that a microtubule organization switch from non-centrosomal to centrosomal microtubule-organizing centers (MTOCs) at the G2/M transition leads to disassembly of non-centrosomal microtubule-derived IPAN protrusions. These findings exemplify how cell shape change-mediated loss of inter-tissue contacts results in 3D tissue morphogenesis.

Identifiants

pubmed: 38263333
doi: 10.1038/s44318-023-00025-w
pii: 10.1038/s44318-023-00025-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Academy of Finland (AKA)
ID : 347569
Organisme : Academy of Finland (AKA)
ID : 272280
Organisme : Eesti Teadusagentuur (ETAg)
ID : MOBERC33

Informations de copyright

© 2024. The Author(s).

Références

Aigouy B, Farhadifar R, Staple DB, Sagner A, Roper JC, Julicher F, Eaton S (2010) Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 142:773–786
pubmed: 20813263 doi: 10.1016/j.cell.2010.07.042
Akhmanova A, Hoogenraad CC (2015) Microtubule minus-end-targeting proteins. Curr Biol 25:R162–171
pubmed: 25689915 doi: 10.1016/j.cub.2014.12.027
Ashburner M, Golic KG, Hawley RS (2004) Drosophila: a laboratory handbook, 2nd edn. Cold Spring Habor Press, Cold Sprig Habor, NY
Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A, Raff JW (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133:1032–1042
pubmed: 18555779 pmcid: 2653712 doi: 10.1016/j.cell.2008.05.039
Blair SS (2007) Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annu Rev Cell Dev Biol 23:293–319
pubmed: 17506700 doi: 10.1146/annurev.cellbio.23.090506.123606
Booth AJR, Blanchard GB, Adams RJ, Röper K (2014) A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation. Dev Cell 29:562–576
pubmed: 24914560 pmcid: 4064686 doi: 10.1016/j.devcel.2014.03.023
Burute M, Prioux M, Blin G, Truchet S, Letort G, Tseng Q, Bessy T, Lowell S, Young J, Filhol O et al (2017) Polarity reversal by centrosome repositioning primes cell scattering during epithelial-to-mesenchymal transition. Dev Cell 40:168–184
pubmed: 28041907 doi: 10.1016/j.devcel.2016.12.004
Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107
pubmed: 15580262 doi: 10.1038/nbt1044
Calleja M, Moreno E, Pelaz S, Morata G (1996) Visualization of gene expression in living adult Drosophila. Science 274:252–255
pubmed: 8824191 doi: 10.1126/science.274.5285.252
Classen AK, Aigouy B, Giangrande A, Eaton S (2008) Imaging Drosophila pupal wing morphogenesis. Methods Mol Biol 420:265–275
pubmed: 18641953 doi: 10.1007/978-1-59745-583-1_16
Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437:1018–1021
pubmed: 16136078 doi: 10.1038/nature04117
Cordero Cervantes D, Zurzolo C (2021) Peering into tunneling nanotubes-the path forward. EMBO J 40:e105789
pubmed: 33646572 pmcid: 8047439 doi: 10.15252/embj.2020105789
Davidson LA, Dzamba BD, Keller R, Desimone DW (2008) Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis. Dev Dyn 237:2684–2692
pubmed: 18629871 pmcid: 2628587 doi: 10.1002/dvdy.21600
Demontis F, Dahmann C (2007) Apical and lateral cell protrusions interconnect epithelial cells in live Drosophila wing imaginal discs. Dev Dyn 236:3408–3418
pubmed: 17854054 doi: 10.1002/dvdy.21324
Etournay R, Merkel M, Popovic M, Brandl H, Dye NA, Aigouy B, Salbreux G, Eaton S, Julicher F (2016) TissueMiner: a multiscale analysis toolkit to quantify how cellular processes create tissue dynamics. Elife 5:e14334
pubmed: 27228153 pmcid: 4946903 doi: 10.7554/eLife.14334
Etournay R, Popović M, Merkel M, Nandi A, Blasse C, Aigouy B, Brandl H, Myers G, Salbreux G, Jülicher F et al (2015) Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. Elife 4:e07090
pubmed: 26102528 pmcid: 4574473 doi: 10.7554/eLife.07090
Fristrom D, Wilcox M, Fristrom J (1993) The distribution of PS integrins, laminin A and F-actin during key stages in Drosophila wing development. Development 117:509–523
pubmed: 8330522 doi: 10.1242/dev.117.2.509
Garcia-Bellido A (1977) Inductive mechanisms in the process of wing vein formation in Drosophila. Wilhelm Roux’s Arch Dev Biol 182:93–106
doi: 10.1007/BF00848050
Gibson MC, Patel AB, Nagpal R, Perrimon N (2006) The emergence of geometric order in proliferating metazoan epithelia. Nature 442:1038–1041
pubmed: 16900102 doi: 10.1038/nature05014
Gillard G, Girdler G, Röper K (2021) A release-and-capture mechanism generates an essential non-centrosomal microtubule array during tube budding. Nat Commun 12:4096
pubmed: 34215746 pmcid: 8253823 doi: 10.1038/s41467-021-24332-0
Glover DM (2012) The overlooked greatwall: a new perspective on mitotic control. Open Biol 2:120023
pubmed: 22754657 pmcid: 3382961 doi: 10.1098/rsob.120023
Gui J, Huang Y, Montanari M, Toddie-Moore D, Kikushima K, Nix S, Ishimoto Y, Shimmi O (2019) Coupling between dynamic 3D tissue architecture and BMP morphogen signaling during Drosophila wing morphogenesis. Proc Natl Acad Sci USA 116:4352–4361
pubmed: 30760594 pmcid: 6410814 doi: 10.1073/pnas.1815427116
Gómez-Gálvez P, Vicente-Munuera P, Anbari S, Buceta J, Escudero LM (2021) The complex three-dimensional organization of epithelial tissues. Development 148:dev195669
pubmed: 33408064 doi: 10.1242/dev.195669
Hannezo E, Heisenberg CP (2019) Mechanochemical feedback loops in development and disease. Cell 178:12–25
pubmed: 31251912 doi: 10.1016/j.cell.2019.05.052
Hashimoto M, Bhuyan F, Hiyoshi M, Noyori O, Nasser H, Miyazaki M, Saito T, Kondoh Y, Osada H, Kimura S et al (2016) Potential role of the formation of tunneling nanotubes in HIV-1 spread in macrophages. J Immunol 196:1832–1841
pubmed: 26773158 doi: 10.4049/jimmunol.1500845
Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545
pubmed: 12692560 pmcid: 1820765 doi: 10.1038/nbt816
Huangfu D, Anderson KV (2005) Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102:11325–11330
pubmed: 16061793 pmcid: 1183606 doi: 10.1073/pnas.0505328102
Inaba M, Buszczak M, Yamashita YM (2015) Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature 523:329–332
pubmed: 26131929 pmcid: 4586072 doi: 10.1038/nature14602
Korenkova O, Pepe A, Zurzolo C (2020) Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges? Cell Stress 4:30–43
pubmed: 32043076 pmcid: 6997949 doi: 10.15698/cst2020.02.212
Kornberg TB (2017) Distributing signaling proteins in space and time: the province of cytonemes. Curr Opin Genet Dev 45:22–27
pubmed: 28242479 pmcid: 5502195 doi: 10.1016/j.gde.2017.02.010
Kumar A, Kim JH, Ranjan P, Metcalfe MG, Cao W, Mishina M, Gangappa S, Guo Z, Boyden ES, Zaki S et al (2017) Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Sci Rep 7:40360
pubmed: 28059146 pmcid: 5216422 doi: 10.1038/srep40360
Mao CX, Xiong Y, Xiong Z, Wang Q, Zhang YQ, Jin S (2014) Microtubule-severing protein Katanin regulates neuromuscular junction development and dendritic elaboration in Drosophila. Development 141:1064–1074
pubmed: 24550114 doi: 10.1242/dev.097774
Milan M, Campuzano S, Garcia-Bellido A (1996) Cell cycling and patterned cell proliferation in the Drosophila wing during metamorphosis. Proc Natl Acad Sci USA 93:11687–11692
pubmed: 8876197 pmcid: 38119 doi: 10.1073/pnas.93.21.11687
Montanari MP, Tran NV, Shimmi O (2022) Regulation of spatial distribution of BMP ligands for pattern formation. Dev Dyn 251:198–212
pubmed: 34241935 doi: 10.1002/dvdy.397
Muroyama A, Lechler T (2017) Microtubule organization, dynamics and functions in differentiated cells. Development 144:3012–3021
pubmed: 28851722 pmcid: 5611961 doi: 10.1242/dev.153171
Nakajima Y, Kuranaga E, Sugimura K, Miyawaki A, Miura M (2011) Nonautonomous apoptosis is triggered by local cell cycle progression during epithelial replacement in Drosophila. Mol Cell Biol 31:2499–2512
pubmed: 21482673 pmcid: 3133417 doi: 10.1128/MCB.01046-10
Nashchekin D, Fernandes AR, St Johnston D (2016) Patronin/shot cortical foci assemble the noncentrosomal microtubule array that specifies the Drosophila anterior-posterior axis. Dev Cell 38:61–72
pubmed: 27404359 pmcid: 4943857 doi: 10.1016/j.devcel.2016.06.010
Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98
pubmed: 26536111 doi: 10.1038/nature16071
Plotnikova OV, Pugacheva EN, Golemis EA (2009) Primary cilia and the cell cycle. Methods Cell Biol 94:137–160
pubmed: 20362089 pmcid: 2852269 doi: 10.1016/S0091-679X(08)94007-3
Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129:1351–1363
pubmed: 17604723 pmcid: 2504417 doi: 10.1016/j.cell.2007.04.035
Ramirez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607
pubmed: 10367889 doi: 10.1016/S0092-8674(00)80771-0
Rebollo E, Llamazares S, Reina J, Gonzalez C (2004) Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes. PLoS Biol 2:E8
pubmed: 14758368 pmcid: 317275 doi: 10.1371/journal.pbio.0020008
Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010
pubmed: 14963329 doi: 10.1126/science.1093133
Röper K (2020) Microtubules enter centre stage for morphogenesis. Philos Trans R Soc Lond B Biol Sci 375:20190557
pubmed: 32829681 pmcid: 7482213 doi: 10.1098/rstb.2019.0557
Sagar, Pröls F, Wiegreffe C, Scaal M (2015) Communication between distant epithelial cells by filopodia-like protrusions during embryonic development. Development 142:665–671
pubmed: 25617437 doi: 10.1242/dev.115964
Sato Y, Nagatoshi K, Hamano A, Imamura Y, Huss D, Uchida S, Lansford R (2017) Basal filopodia and vascular mechanical stress organize fibronectin into pillars bridging the mesoderm-endoderm gap. Development 144:281–291
pubmed: 28096216 doi: 10.1242/dev.141259
Scheiblich H, Dansokho C, Mercan D, Schmidt SV, Bousset L, Wischhof L, Eikens F, Odainic A, Spitzer J, Griep A et al (2021) Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell 184(20):5089.e21–5106.e21
doi: 10.1016/j.cell.2021.09.007
Schnerch D, Nigg EA (2016) Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene 35:2711–2722
pubmed: 26364601 doi: 10.1038/onc.2015.332
Sun T, Song Y, Teng D, Chen Y, Dai J, Ma M, Zhang W, Pastor-Pareja JC (2021) Atypical laminin spots and pull-generated microtubule-actin projections mediate Drosophila wing adhesion. Cell Rep 36:109667
pubmed: 34496252 doi: 10.1016/j.celrep.2021.109667
Toya M, Kobayashi S, Kawasaki M, Shioi G, Kaneko M, Ishiuchi T, Misaki K, Meng W, Takeichi M (2016) CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells. Proc Natl Acad Sci USA 113:332–337
pubmed: 26715742 doi: 10.1073/pnas.1520638113
Tripathi BK, Irvine KD (2022) The wing imaginal disc. Genetics 220:iyac020
pubmed: 35243513 pmcid: 8982031 doi: 10.1093/genetics/iyac020
Voelzmann A, Liew YT, Qu Y, Hahn I, Melero C, Sánchez-Soriano N, Prokop A (2017) Drosophila short stop as a paradigm for the role and regulation of spectraplakins. Semin Cell Dev Biol 69:40–57
pubmed: 28579450 doi: 10.1016/j.semcdb.2017.05.019
Waddington CH (1940) The genetic control of wing development in Drosophila. J Genet 41:75–139
doi: 10.1007/BF02982977
Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17:5–21
pubmed: 26631930 doi: 10.1038/nrn.2015.1
Wilcockson SG, Ashe HL (2019) Drosophila ovarian germline stem cell cytocensor projections dynamically receive and attenuate BMP signaling. Dev Cell 50:296.e5–312.e5
doi: 10.1016/j.devcel.2019.05.020
Wu J, Akhmanova A (2017) Microtubule-organizing centers. Annu Rev Cell Dev Biol 33:51–75
pubmed: 28645217 doi: 10.1146/annurev-cellbio-100616-060615
Yagi R, Mayer F, Basler K (2010) Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc Natl Acad Sci USA 107:16166–16171
pubmed: 20805468 pmcid: 2941298 doi: 10.1073/pnas.1005957107
Zhang K, Sun Z, Chen X, Zhang Y, Guo A (2021) Intercellular transport of Tau protein and β-amyloid mediated by tunneling nanotubes. Am J Transl Res 13:12509–12522
pubmed: 34956469 pmcid: 8661147
Zhang S, Amourda C, Garfield D, Saunders TE (2018) Selective filopodia adhesion ensures robust cell matching in the Drosophila heart. Dev Cell 46:189.e4–203.e4
doi: 10.1016/j.devcel.2018.06.015

Auteurs

Ngan Vi Tran (NV)

Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia.

Martti P Montanari (MP)

Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland.

Jinghua Gui (J)

Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland.

Dmitri Lubenets (D)

Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia.

Léa Louise Fischbach (LL)

Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland.

Hanna Antson (H)

Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia.

Yunxian Huang (Y)

Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland.

Erich Brutus (E)

Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia.

Yasushi Okada (Y)

Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan.
Departments of Cell Biology and Physics, University of Tokyo, Tokyo, Japan.

Yukitaka Ishimoto (Y)

Department of Machine Intelligence and Systems Engineering, Akita Prefectural University, Akita, 015-0055, Japan.

Tambet Tõnissoo (T)

Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia.

Osamu Shimmi (O)

Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia. osamu.shimmi@helsinki.fi.
Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland. osamu.shimmi@helsinki.fi.

Classifications MeSH