Development of macrophage-associated genes prognostic signature predicts clinical outcome and immune infiltration for sepsis.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 Jan 2024
23 Jan 2024
Historique:
received:
06
10
2023
accepted:
06
01
2024
medline:
24
1
2024
pubmed:
24
1
2024
entrez:
23
1
2024
Statut:
epublish
Résumé
Sepsis is a major global health problem, causing a significant burden of disease and death worldwide. Risk stratification of sepsis patients, identification of severe patients and timely initiation of treatment can effectively improve the prognosis of sepsis patients. We procured gene expression datasets for sepsis (GSE54514, GSE65682, GSE95233) from the Gene Expression Omnibus and performed normalization to mitigate batch effects. Subsequently, we applied weighted gene co-expression network analysis to categorize genes into modules that exhibit correlation with macrophage activity. To pinpoint macrophage-associated genes (MAAGs), we executed differential expression analysis and single sample gene set enrichment analysis. We then established a prognostic model derived from four MAAGs that were significantly differentially expressed. Functional enrichment analysis and immune infiltration assessments were instrumental in deciphering the biological mechanisms involved. Furthermore, we employed principal component analysis and conducted survival outcome analyses to delineate molecular subgroups within sepsis. Four novel MAAGs-CD160, CX3CR1, DENND2D, and FAM43A-were validated and used to create a prognostic model. Subgroup classification revealed distinct molecular profiles and a correlation with 28-day survival outcomes. The MAAGs risk score was developed through univariate Cox, LASSO, and multivariate Cox analyses to predict patient prognosis. Validation of the risk score upheld its prognostic significance. Functional enrichment implicated ribonucleoprotein complex biogenesis, mitochondrial matrix, and transcription coregulator activity in sepsis, with an immune infiltration analysis indicating an association between MAAGs risk score and immune cell populations. The four MAAGs exhibited strong diagnostic capabilities for sepsis. The research successfully developed a MAAG-based prognostic model for sepsis, demonstrating that such genes can significantly stratify risk and reflect immune status. Although in-depth mechanistic studies are needed, these findings propose novel targets for therapy and provide a foundation for future precise clinical sepsis management.
Identifiants
pubmed: 38263335
doi: 10.1038/s41598-024-51536-3
pii: 10.1038/s41598-024-51536-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2026Informations de copyright
© 2024. The Author(s).
Références
She, H. et al. VDAC2 malonylation participates in sepsis-induced myocardial dysfunction via mitochondrial-related ferroptosis. Int. J. Biol. Sci. 19(10), 3143–3158 (2023).
doi: 10.7150/ijbs.84613
pubmed: 37416771
pmcid: 10321281
Vincent, J. L. Current sepsis therapeutics. EBioMedicine 86, 104318 (2022).
doi: 10.1016/j.ebiom.2022.104318
pubmed: 36470828
pmcid: 9782815
Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 395(10219), 200–211 (2020).
doi: 10.1016/S0140-6736(19)32989-7
pubmed: 31954465
pmcid: 6970225
Liu, D. et al. Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options. Mil. Med. Res. 9(1), 56 (2022).
pubmed: 36209190
pmcid: 9547753
Barichello, T., Generoso, J. S., Singer, M. & Dal-Pizzol, F. Biomarkers for sepsis: More than just fever and leukocytosis-a narrative review. Crit Care. 26(1), 14 (2022).
doi: 10.1186/s13054-021-03862-5
pubmed: 34991675
pmcid: 8740483
Zhou, M. et al. Extracellular CIRP dysregulates macrophage bacterial phagocytosis in sepsis. Cell Mol. Immunol. 20(1), 80–93 (2023).
doi: 10.1038/s41423-022-00961-3
pubmed: 36471113
Chen, X., Liu, Y., Gao, Y., Shou, S. & Chai, Y. The roles of macrophage polarization in the host immune response to sepsis. Int. Immunopharmacol. 96, 107791 (2021).
doi: 10.1016/j.intimp.2021.107791
pubmed: 34162154
Qiu, P., Liu, Y. & Zhang, J. Review: The role and mechanisms of macrophage autophagy in sepsis. Inflammation 42(1), 6–19 (2019).
doi: 10.1007/s10753-018-0890-8
pubmed: 30194660
Luo, R., Li, X. & Wang, D. Reprogramming macrophage metabolism and its effect on NLRP3 inflammasome activation in sepsis. Front. Mol. Biosci. 9, 917818 (2022).
doi: 10.3389/fmolb.2022.917818
pubmed: 35847986
pmcid: 9276983
She, H. et al. Integrative single-cell RNA sequencing and metabolomics decipher the imbalanced lipid-metabolism in maladaptive immune responses during sepsis. Front. Immunol. 14, 1181697 (2023).
doi: 10.3389/fimmu.2023.1181697
pubmed: 37180171
pmcid: 10172510
She, H. et al. Identification of featured necroptosis-related genes and imbalanced immune infiltration in sepsis via machine learning. Front. Genet. 14, 1158029 (2023).
doi: 10.3389/fgene.2023.1158029
pubmed: 37091800
pmcid: 10117955
Tu, T. C. et al. CD160 is essential for NK-mediated IFN-gamma production. J. Exp. Med. 212(3), 415–429 (2015).
doi: 10.1084/jem.20131601
pubmed: 25711213
pmcid: 4354368
Zhang, L. et al. CD160 plays a protective role during chronic infection by enhancing both functionalities and proliferative capacity of CD8+ T cells. Front Immunol. 11, 2188 (2020).
doi: 10.3389/fimmu.2020.02188
pubmed: 33072082
pmcid: 7533580
Piotrowska, M., Spodzieja, M., Kuncewicz, K., Rodziewicz-Motowidlo, S. & Orlikowska, M. CD160 protein as a new therapeutic target in a battle against autoimmune, infectious and lifestyle diseases. Analysis of the structure, interactions and functions. Eur. J. Med. Chem. 224, 113694 (2021).
doi: 10.1016/j.ejmech.2021.113694
pubmed: 34273660
Guinault, D. et al. Expression of exhaustion markers on CD8+ T-cell patterns predict outcomes in septic patients admitted to the ICU. Crit Care Med. 49(9), 1513–1523 (2021).
doi: 10.1097/CCM.0000000000005047
pubmed: 33900216
Vigano, S. et al. CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression. PLoS Pathog. 10(9), e1004380 (2014).
doi: 10.1371/journal.ppat.1004380
pubmed: 25255144
pmcid: 4177992
Marat, A. L., Dokainish, H. & McPherson, P. S. DENN domain proteins: Regulators of Rab GTPases. J. Biol. Chem. 286(16), 13791–13800 (2011).
doi: 10.1074/jbc.R110.217067
pubmed: 21330364
pmcid: 3077579
Yoshimura, S., Gerondopoulos, A., Linford, A., Rigden, D. J. & Barr, F. A. Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J. Cell Biol. 191(2), 367–381 (2010).
doi: 10.1083/jcb.201008051
pubmed: 20937701
pmcid: 2958468
Zhang, X. et al. EGFR tyrosine kinase activity and Rab GTPases coordinate EGFR trafficking to regulate macrophage activation in sepsis. Cell Death Dis. 13(11), 934 (2022).
doi: 10.1038/s41419-022-05370-y
pubmed: 36344490
pmcid: 9640671
Kanda, M. et al. Prognostic impact of expression and methylation status of DENN/MADD domain-containing protein 2D in gastric cancer. Gastric Cancer 18(2), 288–296 (2015).
doi: 10.1007/s10120-014-0372-0
pubmed: 24695972
Ma, W. J. et al. Stage IV colon cancer patients without DENND2D expression benefit more from neoadjuvant chemotherapy. Cell Death Dis. 13(5), 439 (2022).
doi: 10.1038/s41419-022-04885-8
pubmed: 35523764
pmcid: 9076603
Chen, X. S. et al. Angiotensin-(1–7) ameliorates sepsis-induced cardiomyopathy by alleviating inflammatory response and mitochondrial damage through the NF-kappaB and MAPK pathways. J. Transl. Med. 21(1), 2 (2023).
doi: 10.1186/s12967-022-03842-5
pubmed: 36593471
pmcid: 9807106
Pachot, A. et al. Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J. Immunol. 180(9), 6421–6429 (2008).
doi: 10.4049/jimmunol.180.9.6421
pubmed: 18424766
Ishida, Y. et al. Essential involvement of CX3CR1-mediated signals in the bactericidal host defense during septic peritonitis. J. Immunol. 181(6), 4208–4218 (2008).
doi: 10.4049/jimmunol.181.6.4208
pubmed: 18768878
Friggeri, A. et al. Decreased CX3CR1 messenger RNA expression is an independent molecular biomarker of early and late mortality in critically ill patients. Crit Care 20(1), 204 (2016).
doi: 10.1186/s13054-016-1362-x
pubmed: 27364780
pmcid: 4929760
Velly, L. et al. Optimal combination of early biomarkers for infection and sepsis diagnosis in the emergency department: The BIPS study. J. Infect. 82(4), 11–21 (2021).
doi: 10.1016/j.jinf.2021.02.019
pubmed: 33610685
Privratsky, J. R. et al. A macrophage-endothelial immunoregulatory axis ameliorates septic acute kidney injury. Kidney Int. 103(3), 514–528 (2023).
doi: 10.1016/j.kint.2022.10.008
pubmed: 36334787
Kemeny, D. M., Kagey-Sobotka, A., Lichtenstein, L. M. & Lessof, M. H. IgE and IgG antibody response to purified bee-venom antigens and peptides in four patients who had adverse reactions to immunotherapy. Clin. Allergy 18(1), 79–84 (1988).
doi: 10.1111/j.1365-2222.1988.tb02846.x
pubmed: 3349595
Lin, Y., Rong, J. & Zhang, Z. Silent existence of eosinopenia in sepsis: A systematic review and meta-analysis. BMC Infect. Dis. 21(1), 471 (2021).
doi: 10.1186/s12879-021-06150-3
pubmed: 34030641
pmcid: 8142617
Chusid, M. J. Eosinophils: Friends or foes?. J. Allergy Clin. Immunol. Pract. 6(5), 1439–1444 (2018).
doi: 10.1016/j.jaip.2018.04.031
pubmed: 30197067
Yousefi, S. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 14(9), 949–953 (2008).
doi: 10.1038/nm.1855
pubmed: 18690244
Eberl, G. Immunity by equilibrium. Nat. Rev. Immunol. 16(8), 524–532 (2016).
doi: 10.1038/nri.2016.75
pubmed: 27396446
Spellberg, B. & Edwards, J. E. Jr. Type 1/Type 2 immunity in infectious diseases. Clin. Infect. Dis. 32(1), 76–102 (2001).
doi: 10.1086/317537
pubmed: 11118387
Krishack, P. A. et al. Protection against Staphylococcus aureus bacteremia-induced mortality depends on ILC2s and eosinophils. JCI Insight. 4(6), e124168 (2019).
pubmed: 30721149
pmcid: 6482999