Plant U-box E3 ligases PUB20 and PUB21 negatively regulate pattern-triggered immunity in Arabidopsis.
Arabidopsis
E3 ligase
PUB20
PUB21
Pattern-triggered immunity
Journal
Plant molecular biology
ISSN: 1573-5028
Titre abrégé: Plant Mol Biol
Pays: Netherlands
ID NLM: 9106343
Informations de publication
Date de publication:
24 Jan 2024
24 Jan 2024
Historique:
received:
17
08
2023
accepted:
14
12
2023
medline:
24
1
2024
pubmed:
24
1
2024
entrez:
24
1
2024
Statut:
epublish
Résumé
Plant U-box E3 ligases PUB20 and PUB21 are flg22-triggered signaling components and negatively regulate immune responses. Plant U-box proteins (PUBs) constitute a class of E3 ligases that are associated with various stress responses. Among the class IV PUBs featuring C-terminal Armadillo (ARM) repeats, PUB20 and PUB21 are closely related homologs. Here, we show that both PUB20 and PUB21 negatively regulate innate immunity in plants. Loss of PUB20 and PUB21 function leads to enhanced resistance to surface inoculation with the virulent bacterium Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the resistance levels remain unaffected after infiltration inoculation, suggesting that PUB20 and PUB21 primarily function during the early defense stages. The enhanced resistance to Pst DC3000 in PUB mutant plants (pub20-1, pub21-1, and pub20-1/pub21-1) correlates with extensive flg22-triggered reactive oxygen production, strong MPK3 activation, and enhanced transcriptional activation of early immune response genes. Additionally, PUB mutant plants (except pub21-1) exhibit constitutive stomatal closure after Pst DC3000 inoculation, implying the significant role of PUB20 in stomatal immunity. Comparative analyses of flg22 responses between PUB mutants and wild-type plants reveals that the robust activation of the pattern-induced immune responses may enhance resistance against Pst DC3000. Notably, the hypersensitivity responses triggered by RPM1/avrRpm1 and RPS2/avrRpt2 are independent of PUB20 and PUB21. These results suggest that PUB20 and PUB21 knockout mutations affect bacterial invasion, likely during the early stages, acting as negative regulators of plant immunity.
Identifiants
pubmed: 38265485
doi: 10.1007/s11103-023-01409-6
pii: 10.1007/s11103-023-01409-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7Subventions
Organisme : Ministry of Education of the Republic of Korea and National Research Foundation of Korea
ID : NRF-2018K1A3A7A03089858
Organisme : KAKENHI
ID : 22H00364
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29(Suppl 1):3–9. https://doi.org/10.1016/s0305-7372(03)00081-1
doi: 10.1016/s0305-7372(03)00081-1
pubmed: 12738238
Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414. https://doi.org/10.1146/annurev.phyto.42.040103.110731
doi: 10.1146/annurev.phyto.42.040103.110731
pubmed: 15283671
Anderson JC, Wan Y, Kim YM, Pasa-Tolic L, Metz TO, Peck SC (2014) Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. Proc Natl Acad Sci USA 111(18):6846–6851. https://doi.org/10.1073/pnas.1403248111
doi: 10.1073/pnas.1403248111
pubmed: 24753604
pmcid: 4020108
Aravind L, Koonin EV (2000) The U box is a modified RING finger—a common domain in ubiquitination. Curr Biol 10(4):R132–R134. https://doi.org/10.1016/s0960-9822(00)00398-5
doi: 10.1016/s0960-9822(00)00398-5
pubmed: 10704423
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983. https://doi.org/10.1038/415977a
doi: 10.1038/415977a
pubmed: 11875555
Azevedo C, Santos-Rosa MJ, Shirasu K (2001) The U-box protein family in plants. Trends Plant Sci 6(8):354–358. https://doi.org/10.1016/s1360-1385(01)01960-4
doi: 10.1016/s1360-1385(01)01960-4
pubmed: 11495788
Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324(5928):742–744. https://doi.org/10.1126/science.1171647
doi: 10.1126/science.1171647
pubmed: 19423812
pmcid: 2729760
Cho SK, Ryu MY, Song C, Kwak JM, Kim WT (2008) Arabidopsis PUB22 and PUB23 are homologous U-box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell 20(7):1899–1914. https://doi.org/10.1105/tpc.108.060699
doi: 10.1105/tpc.108.060699
pubmed: 18664614
pmcid: 2518226
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
doi: 10.1046/j.1365-313x.1998.00343.x
pubmed: 10069079
Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1(3):423–445. https://doi.org/10.1093/mp/ssn019
doi: 10.1093/mp/ssn019
pubmed: 19825551
Feys B, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6(5):751–759. https://doi.org/10.1105/tpc.6.5.751
doi: 10.1105/tpc.6.5.751
pubmed: 12244256
pmcid: 160473
Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol 99(1):263–268
doi: 10.1104/pp.99.1.263
pubmed: 16668860
pmcid: 1080434
Gilroy EM, Taylor RM, Hein I, Boevink P, Sadanandom A, Birch PR (2011) CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytol 190(3):653–666. https://doi.org/10.1111/j.1469-8137.2011.03643.x
doi: 10.1111/j.1469-8137.2011.03643.x
pubmed: 21348873
Gomez-Gomez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7(6):251–256. https://doi.org/10.1016/S1360-1385(02)02261-6
doi: 10.1016/S1360-1385(02)02261-6
pubmed: 12049921
Gomez-Gomez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18(3):277–284
doi: 10.1046/j.1365-313X.1999.00451.x
pubmed: 10377993
Gonzalez-Lamothe R, Tsitsigiannis DI, Ludwig AA, Panicot M, Shirasu K, Jones JD (2006) The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 18(4):1067–1083. https://doi.org/10.1105/tpc.106.040998
doi: 10.1105/tpc.106.040998
pubmed: 16531490
pmcid: 1425846
He Q, McLellan H, Boevink PC, Sadanandom A, Xie C, Birch PR, Tian Z (2015) U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. J Exp Bot 66(11):3189–3199. https://doi.org/10.1093/jxb/erv128
doi: 10.1093/jxb/erv128
pubmed: 25873665
pmcid: 4449539
Heise A, Lippok B, Kirsch C, Hahlbrock K (2002) Two immediate-early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box-containing elicitor-response element of AtCMPG1. Proc Natl Acad Sci USA 99(13):9049–9054. https://doi.org/10.1073/pnas.132277699
doi: 10.1073/pnas.132277699
pubmed: 12084942
pmcid: 124421
Hotton SK, Callis J (2008) Regulation of cullin RING ligases. Annu Rev Plant Biol 59:467–489. https://doi.org/10.1146/annurev.arplant.58.032806.104011
doi: 10.1146/annurev.arplant.58.032806.104011
pubmed: 18444905
Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334. https://doi.org/10.1146/annurev-arplant-042809-112256
doi: 10.1146/annurev-arplant-042809-112256
pubmed: 21370976
Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24(5):655–665
doi: 10.1046/j.1365-313x.2000.00913.x
pubmed: 11123804
Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006) MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem 281(48):36969–36976. https://doi.org/10.1074/jbc.M605319200
doi: 10.1074/jbc.M605319200
pubmed: 17023433
Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. https://doi.org/10.1038/nature05286
doi: 10.1038/nature05286
pubmed: 17108957
Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN (2001) Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J 26(5):509–522. https://doi.org/10.1046/j.1365-313x.2001.01050.x
doi: 10.1046/j.1365-313x.2001.01050.x
pubmed: 11439137
Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16(12):3496–3507. https://doi.org/10.1105/tpc.104.026765
doi: 10.1105/tpc.104.026765
pubmed: 15548740
pmcid: 535888
Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96(20):11364–11369. https://doi.org/10.1073/pnas.96.20.11364
doi: 10.1073/pnas.96.20.11364
pubmed: 10500182
pmcid: 18039
Lu DP, Lin WW, Gao XQ, Wu SJ, Cheng C, Avila J, Heese A, Devarenne TP, He P, Shan LB (2011) Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332(6036):1439–1442. https://doi.org/10.1126/science.1204903
doi: 10.1126/science.1204903
pubmed: 21680842
pmcid: 3243913
Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112(3):379–389. https://doi.org/10.1016/S0092-8674(03)00040-0
doi: 10.1016/S0092-8674(03)00040-0
pubmed: 12581527
Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126(5):969–980. https://doi.org/10.1016/j.cell.2006.06.054
doi: 10.1016/j.cell.2006.06.054
pubmed: 16959575
Mersmann S, Bourdais G, Rietz S, Robatzek S (2010) Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol 154(1):391–400. https://doi.org/10.1104/pp.110.154567
doi: 10.1104/pp.110.154567
pubmed: 20592040
pmcid: 2938167
Morales J, Kadota Y, Zipfel C, Molina A, Torres MA (2016) The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. J Exp Bot 67(6):1663–1676. https://doi.org/10.1093/jxb/erv558
doi: 10.1093/jxb/erv558
pubmed: 26798024
Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JD (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135(2):1113–1128. https://doi.org/10.1104/pp.103.036749
doi: 10.1104/pp.103.036749
pubmed: 15181213
pmcid: 514144
Ngou BPM, Ahn HK, Ding PT, Jones JDG (2021) Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592(7852):110. https://doi.org/10.1038/s41586-021-03315-7
doi: 10.1038/s41586-021-03315-7
pubmed: 33692545
Ngou BPM, Ding PT, Jones JDG (2022) Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34(5):1447–1478. https://doi.org/10.1093/plcell/koac041
doi: 10.1093/plcell/koac041
pubmed: 35167697
pmcid: 9048904
Nishinaka Y, Aramaki Y, Yoshida H, Masuya H, Sugawara T, Ichimori Y (1993) A new sensitive chemiluminescence probe, L-012, for measuring the production of superoxide anion by cells. Biochem Biophys Res Commun 193(2):554–559. https://doi.org/10.1006/bbrc.1993.1659
doi: 10.1006/bbrc.1993.1659
pubmed: 8390246
Patterson C (2002) A new gun in town: the U box is a ubiquitin ligase domain. Sci STKE 2002(116):pe4. https://doi.org/10.1126/stke.2002.116.pe4
doi: 10.1126/stke.2002.116.pe4
pubmed: 11805346
Stegmann M, Anderson RG, Ichimura K, Pecenkova T, Reuter P, Zarsky V, McDowell JM, Shirasu K, Trujillo M (2012) The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis. Plant Cell 24(11):4703–4716. https://doi.org/10.1105/tpc.112.104463
doi: 10.1105/tpc.112.104463
pubmed: 23170036
pmcid: 3531861
Trenner J, Monaghan J, Saeed B, Quint M, Shabek N, Trujillo M (2022) Evolution and functions of plant U-box proteins: from protein quality control to signaling. Annu Rev Plant Biol 73:93–121. https://doi.org/10.1146/annurev-arplant-102720-012310
doi: 10.1146/annurev-arplant-102720-012310
pubmed: 35226816
Trujillo M, Ichimura K, Casais C, Shirasu K (2008) Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol 18(18):1396–1401. https://doi.org/10.1016/j.cub.2008.07.085
doi: 10.1016/j.cub.2008.07.085
pubmed: 18771922
Truman W, Sreekanta S, Lu Y, Bethke G, Tsuda K, Katagiri F, Glazebrook J (2013) The CALMODULIN-BINDING PROTEIN60 family includes both negative and positive regulators of plant immunity. Plant Physiol 163(4):1741–1751. https://doi.org/10.1104/pp.113.227108
doi: 10.1104/pp.113.227108
pubmed: 24134885
pmcid: 3850189
Underwood W, Melotto M, He SY (2007) Role of plant stomata in bacterial invasion. Cell Microbiol 9(7):1621–1629. https://doi.org/10.1111/j.1462-5822.2007.00938.x
doi: 10.1111/j.1462-5822.2007.00938.x
pubmed: 17419713
Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10(6):385–397. https://doi.org/10.1038/nrm2688
doi: 10.1038/nrm2688
pubmed: 19424292
Voigt CA (2014) Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci 5:168. https://doi.org/10.3389/fpls.2014.00168
doi: 10.3389/fpls.2014.00168
pubmed: 24808903
pmcid: 4009422
Wang J, Grubb LE, Wang J, Liang X, Li L, Gao C, Ma M, Feng F, Li M, Li L, Zhang X, Yu F, Xie Q, Chen S, Zipfel C, Monaghan J, Zhou JM (2018) A regulatory module controlling homeostasis of a plant immune kinase. Mol Cell 69(3):493–504 e6. https://doi.org/10.1016/j.molcel.2017.12.026
doi: 10.1016/j.molcel.2017.12.026
pubmed: 29358080
Wang W, Liu N, Gao C, Cai H, Romeis T, Tang D (2020) The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol 227(2):529–544. https://doi.org/10.1111/nph.16515
doi: 10.1111/nph.16515
pubmed: 32119118
Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou JM (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18(1):74–80. https://doi.org/10.1016/j.cub.2007.12.020
doi: 10.1016/j.cub.2007.12.020
pubmed: 18158241
Yamada K, Saijo Y, Nakagami H, Takano Y (2016) Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354(6318):1427–1430. https://doi.org/10.1126/science.aah5692
doi: 10.1126/science.aah5692
pubmed: 27884939
Yang CW, Gonzalez-Lamothe R, Ewan RA, Rowland O, Yoshioka H, Shenton M, Ye H, O’Donnell E, Jones JD, Sadanandom A (2006) The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell 18(4):1084–1098. https://doi.org/10.1105/tpc.105.039198
doi: 10.1105/tpc.105.039198
pubmed: 16531496
pmcid: 1425844
Yee D, Goring DR (2009) The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot 60(4):1109–1121. https://doi.org/10.1093/jxb/ern369
doi: 10.1093/jxb/ern369
pubmed: 19196749
Yu G, Derkacheva M, Rufian JS, Brillada C, Kowarschik K, Jiang S, Derbyshire P, Ma M, DeFalco TA, Morcillo RJL, Stransfeld L, Wei Y, Zhou JM, Menke FLH, Trujillo M, Zipfel C, Macho AP (2022) The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type-III effector. EMBO J 41(23):e107257. https://doi.org/10.15252/embj.2020107257
doi: 10.15252/embj.2020107257
pubmed: 36314733
pmcid: 9713774
Yuan MH, Jiang ZY, Bi GZ, Nomura K, Liu MH, Wang YP, Cai BY, Zhou JM, He SY, Xin XF (2021) Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592(7852):105. https://doi.org/10.1038/s41586-021-03316-6
doi: 10.1038/s41586-021-03316-6
pubmed: 33692546
pmcid: 8016741
Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36(4):485–99. https://doi.org/10.1046/j.1365-313x.2003.01895.x
doi: 10.1046/j.1365-313x.2003.01895.x
pubmed: 14617079
Zheng MS, Takahashi H, Miyazaki A, Hamamoto H, Shah J, Yamaguchi I, Kusano T (2004) Up-regulation of Arabidopsis thaliana NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signalling pathways that differ in salicylate involvement. Planta 218(5):740–750. https://doi.org/10.1007/s00425-003-1169-2
doi: 10.1007/s00425-003-1169-2
pubmed: 14666423
Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428(6984):764–767. https://doi.org/10.1038/nature02485
doi: 10.1038/nature02485
pubmed: 15085136