The Association Between Branched-Chain Amino Acid Concentrations and the Risk of Autism Spectrum Disorder in Preschool-Aged Children.
Autism spectrum disorders
Branched-chain amino acids
Early diagnosis
Nomogram
Preschool children
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
24 Jan 2024
24 Jan 2024
Historique:
received:
22
11
2023
accepted:
15
01
2024
medline:
24
1
2024
pubmed:
24
1
2024
entrez:
24
1
2024
Statut:
aheadofprint
Résumé
Several studies have linked branched-chain amino acid (BCAA) metabolism disorders with autism spectrum disorder (ASD), but the results have been inconsistent. The purpose of this study was to explore the association between BCAA concentrations and the risk of ASD. A total of 313 participants were recruited from two tertiary referral hospitals from May 2018 to July 2021. Concentrations of BCAAs in dried blood spots were analyzed using liquid chromatography-tandem mass spectrometry-based analysis. Multivariate analyses and restricted cubic spline models were used to identify the association between BCAAs and the risk of ASD, and a nomogram was developed by using multivariate logistic regression and the risk was determined by receiver operating characteristic curve analysis and calibration curve analysis. Concentrations of total BCAA, valine, and leucine/isoleucine were higher in the ASD group, and all of them were positively and non-linearly associated with the risk of ASD even after adjusting for potential confounding factors such as age, gender, body mass index, and concentrations of BCAAs (P < 0.05). The nomogram integrating total BCAA and valine showed a good discriminant AUC value of 0.756 (95% CI 0.676-0.835). The model could yield net benefits across a reasonable range of risk thresholds. In the stratified analysis, the diagnostic ability of the model was more pronounced in children older than 3 years. We provide evidence that increased levels of BCAAs are associated with the risk of ASD, and the nomogram model of BCAAs presented here can serve as a marker for the early diagnosis of ASD.
Identifiants
pubmed: 38265552
doi: 10.1007/s12035-024-03965-4
pii: 10.1007/s12035-024-03965-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Needham BD, Adame MD, Serena G, Rose DR, Preston GM, Conrad MC, Campbell AS, Donabedian DH et al (2021) Plasma and fecal metabolite profiles in autism spectrum disorder. Biol Psychiatry 89:451–462. https://doi.org/10.1016/j.biopsych.2020.09.025
doi: 10.1016/j.biopsych.2020.09.025
pubmed: 33342544
Cheroni C, Caporale N, Testa G (2020) Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism 11:69. https://doi.org/10.1186/s13229-020-00370-1
doi: 10.1186/s13229-020-00370-1
pubmed: 32912338
pmcid: 7488083
Tărlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M, Galluccio M, Tesulov M et al (2016) Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167:1481–1494. https://doi.org/10.1016/j.cell.2016.11.013
doi: 10.1016/j.cell.2016.11.013
pubmed: 27912058
pmcid: 5554935
Maynard TM, Manzini MC (2017) Balancing act: maintaining amino acid levels in the autistic brain. Neuron 93:476–479. https://doi.org/10.1016/j.neuron.2017.01.015
doi: 10.1016/j.neuron.2017.01.015
pubmed: 28182903
Qian XH, Liu XL, Zhang B, Lin Y, Xu JH, Ding GY, Tang HD (2023) Investigating the causal association between branched-chain amino acids and Alzheimer’s disease: a bidirectional Mendelian randomized study. Front Nutr 10:1103303. https://doi.org/10.3389/fnut.2023.1103303
doi: 10.3389/fnut.2023.1103303
pubmed: 37063328
pmcid: 10102518
Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, Xie Z, Chu X, Yang J, Wang H, Chang S, Gong Y, Ruan L, Zhang G, Yan S, Lian W, Du C, Yang D, Zhang Q et al (2019) Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 29:787–803. https://doi.org/10.1038/s41422-019-0216-x
doi: 10.1038/s41422-019-0216-x
pubmed: 31488882
pmcid: 6796854
Meguid NA, Hashem HS, Ghanem MH, Helal SA, Semenova Y, Hashem S, Hashish A, Chirumbolo S, Elwan AM, Bjørklund G (2023) Evaluation of branched-chain amino acids in children with autism spectrum disorder and epilepsy. Mol Neurobiol 60:1997–2004. https://doi.org/10.1007/s12035-022-03202-w
doi: 10.1007/s12035-022-03202-w
pubmed: 36600079
Zheng HF, Wang WQ, Li XM, Rauw G, Baker GB (2017) Body fluid levels of neuroactive amino acids in autism spectrum disorders: a review of the literature. Amino Acids 49:57–65. https://doi.org/10.1007/s00726-016-2332-y
doi: 10.1007/s00726-016-2332-y
pubmed: 27686223
Aspragkathou DD, Spilioti MG, Gkampeta A, Dalpa E, Holeva V, Papadopoulou MT, Serdari A, Dafoulis V, Zafeiriou DI, Evangeliou AE (2023) Branched-chain amino acids as adjunctive-alternative treatment in patients with autism: a pilot study. Br J Nutr:1–9. https://doi.org/10.1017/S0007114523001496
Chen WX, Chen YR, Peng MZ, Liu X, Cai YN, Huang ZF, Yang SY, Huang JY, Wang RH, Yi P, Liu L (2023) Plasma amino acid profile in children with autism spectrum disorder in southern China: analysis of 110 cases. J Autism Dev Disord. https://doi.org/10.1007/s10803-022-05829-z
Tirouvanziam R, Obukhanych TV, Laval J, Aronov PA, Libove R, Banerjee AG, Parker KJ, O’Hara R, Herzenberg LA, Herzenberg LA, Hardan AY (2012) Distinct plasma profile of polar neutral amino acids, leucine, and glutamate in children with autism spectrum disorders. J Autism Dev Disord 42:827–836. https://doi.org/10.1007/s10803-011-1314-x
doi: 10.1007/s10803-011-1314-x
pubmed: 21713591
Chamtouri M, Merghni A, Salazar N, Redruello B, Gaddour N, Mastouri M, Arboleya S, de Los Reyes-Gavilán CG (2023) An overview on fecal profiles of amino acids and related amino-derived compounds in children with autism spectrum disorder in Tunisia. Molecules 28. https://doi.org/10.3390/molecules28073269
Panjwani AA, Ji Y, Fahey JW, Palmer A, Wang G, Hong X, Zuckerman B, Wang X (2019) Maternal obesity/diabetes, plasma branched-chain amino acids, and autism spectrum disorder risk in urban low-income children: evidence of sex difference. Autism Res 12:1562–1573. https://doi.org/10.1002/aur.2177
doi: 10.1002/aur.2177
pubmed: 31400063
pmcid: 6900287
Raghavan R, Anand NS, Wang G, Hong X, Pearson C, Zuckerman B, Xie H, Wang X (2022) Association between cord blood metabolites in tryptophan pathway and childhood risk of autism spectrum disorder and attention-deficit hyperactivity disorder. Transl Psychiatry 12:270. https://doi.org/10.1038/s41398-022-01992-0
doi: 10.1038/s41398-022-01992-0
pubmed: 35810183
pmcid: 9271093
Wagner M, Tonoli D, Varesio E, Hopfgartner G (2016) The use of mass spectrometry to analyze dried blood spots. Mass Spectrom Rev 35:361–438. https://doi.org/10.1002/mas.21441
doi: 10.1002/mas.21441
pubmed: 25252132
Zhao D, Ni M, Jia C, Li X, Zhu X, Liu S, Su L, Lv S, Wang L, Jia L (2022) Genomic analysis of 9 infants with hypermethioninemia by whole-exome sequencing among in Henan, China. Clin Chim Acta 533:109–113. https://doi.org/10.1016/j.cca.2022.06.021
doi: 10.1016/j.cca.2022.06.021
pubmed: 35760084
Gruenbaum SE, Chen EC, Sandhu MRS, Deshpande K, Dhaher R, Hersey D, Eid T (2019) Branched-chain amino acids and seizures: a systematic review of the literature. CNS Drugs 33:755–770. https://doi.org/10.1007/s40263-019-00650-2
doi: 10.1007/s40263-019-00650-2
pubmed: 31313139
Scaini G, Comim CM, Oliveira GM, Pasquali MA, Quevedo J, Gelain DP, Moreira JC, Schuck PF, Ferreira GC, Bogo MR, Streck EL (2013) Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis 36:721–730. https://doi.org/10.1007/s10545-012-9549-z
doi: 10.1007/s10545-012-9549-z
pubmed: 23109061
Cole JT, Sweatt AJ, Hutson SM (2012) Expression of mitochondrial branched-chain aminotransferase and α-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism. Front Neuroanat 6:18. https://doi.org/10.3389/fnana.2012.00018
doi: 10.3389/fnana.2012.00018
pubmed: 22654736
pmcid: 3361127
Higuchi Y, Tada T, Nakachi T, Arakawa H (2023) Serotonergic circuit dysregulation underlying autism-related phenotypes in BTBR mouse model of autism. Neuropharmacology 237:109634. https://doi.org/10.1016/j.neuropharm.2023.109634
doi: 10.1016/j.neuropharm.2023.109634
pubmed: 37301467
Chao OY, Pathak SS, Zhang H, Dunaway N, Li JS, Mattern C, Nikolaus S, Huston JP, Yang YM (2020) Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol Brain 13:111. https://doi.org/10.1186/s13041-020-00649-7
doi: 10.1186/s13041-020-00649-7
pubmed: 32778145
pmcid: 7418402
Alvestad S, Hammer J, Qu H, Håberg A, Ottersen OP, Sonnewald U (2011) Reduced astrocytic contribution to the turnover of glutamate, glutamine, and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy. J Cereb Blood Flow Metab 31:1675–1686. https://doi.org/10.1038/jcbfm.2011.36
doi: 10.1038/jcbfm.2011.36
pubmed: 21522161
pmcid: 3170943
Neinast M, Murashige D, Arany Z (2019) Branched chain amino acids. Annu Rev Physiol 81:139–164. https://doi.org/10.1146/annurev-physiol-020518-114455
doi: 10.1146/annurev-physiol-020518-114455
pubmed: 30485760
Rose S, Bennuri SC, Davis JE, Wynne R, Slattery JC, Tippett M, Delhey L, Melnyk S, Kahler SG, MacFabe DF, Frye RE (2018) Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psychiatry 8:42. https://doi.org/10.1038/s41398-017-0089-z
doi: 10.1038/s41398-017-0089-z
pubmed: 29391397
pmcid: 5804031
Du C, Liu WJ, Yang J, Zhao SS, Liu HX (2022) The role of branched-chain amino acids and branched-chain α-keto acid dehydrogenase kinase in metabolic disorders. Front Nutr 9:932670. https://doi.org/10.3389/fnut.2022.932670
doi: 10.3389/fnut.2022.932670
pubmed: 35923208
pmcid: 9339795
Zinnanti WJ, Lazovic J, Griffin K, Skvorak KJ, Paul HS, Homanics GE, Bewley MC, Cheng KC, Lanoue KF, Flanagan JM (2009) Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain 132:903–918. https://doi.org/10.1093/brain/awp024
doi: 10.1093/brain/awp024
pubmed: 19293241
pmcid: 2668944
Kaddurah-Daouk R, Bogdanov MB, Wikoff WR, Zhu H, Boyle SH, Churchill E, Wang Z, Rush AJ, Krishnan RR, Pickering E, Delnomdedieu M, Fiehn O (2013) Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo. Transl Psychiatry 3:e223. https://doi.org/10.1038/tp.2012.142
doi: 10.1038/tp.2012.142
pubmed: 23340506
pmcid: 3566722
Shen J, Guo H, Liu S, Jin W, Zhang ZW, Zhang Y, Liu K, Mao S, Zhou Z, Xie L, Wang G, Hao H, Liang Y (2023) Aberrant branched-chain amino acid accumulation along the microbiota-gut-brain axis: crucial targets affecting the occurrence and treatment of ischaemic stroke. Br J Pharmacol 180:347–368. https://doi.org/10.1111/bph.15965
doi: 10.1111/bph.15965
pubmed: 36181407
Li H, Ye D, Xie W, Hua F, Yang Y, Wu J, Gu A, Ren Y, Mao K (2018) Defect of branched-chain amino acid metabolism promotes the development of Alzheimer’s disease by targeting the mTOR signaling. Biosci Rep 38. https://doi.org/10.1042/bsr20180127
Gruenbaum SE, Dhaher R, Rapuano A, Zaveri HP, Tang A, de Lanerolle N, Eid T (2019) Effects of branched-chain amino acid supplementation on spontaneous seizures and neuronal viability in a model of mesial temporal lobe epilepsy. J Neurosurg Anesthesiol 31:247–256. https://doi.org/10.1097/ana.0000000000000499
doi: 10.1097/ana.0000000000000499
pubmed: 29620688
pmcid: 6170745
Coppola A, Wenner BR, Ilkayeva O, Stevens RD, Maggioni M, Slotkin TA, Levin ED, Newgard CB (2013) Branched-chain amino acids alter neurobehavioral function in rats. Am J Physiol Endocrinol Metab 304:E405–E413. https://doi.org/10.1152/ajpendo.00373.2012
doi: 10.1152/ajpendo.00373.2012
pubmed: 23249694
Horgusluoglu E, Neff R, Song WM, Wang M, Wang Q, Arnold M, Krumsiek J, Galindo PB, Ming C, Nho K, Kastenmüller G, Han X, Baillie R, Zeng Q, Andrews S, Cheng H, Hao K, Goate A, Bennett DA et al (2022) Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer’s disease. Alzheimers Dement 18:1260–1278. https://doi.org/10.1002/alz.12468
doi: 10.1002/alz.12468
pubmed: 34757660
McCann JR, Rawls YY (2023) Essential amino acid metabolites as chemical mediators of host-microbe interaction in the Gut. Annu Rev Microbiol 77:479–497. https://doi.org/10.1146/annurev-micro-032421-111819
doi: 10.1146/annurev-micro-032421-111819
pubmed: 37339735