The Association Between Branched-Chain Amino Acid Concentrations and the Risk of Autism Spectrum Disorder in Preschool-Aged Children.

Autism spectrum disorders Branched-chain amino acids Early diagnosis Nomogram Preschool children

Journal

Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963

Informations de publication

Date de publication:
24 Jan 2024
Historique:
received: 22 11 2023
accepted: 15 01 2024
medline: 24 1 2024
pubmed: 24 1 2024
entrez: 24 1 2024
Statut: aheadofprint

Résumé

Several studies have linked branched-chain amino acid (BCAA) metabolism disorders with autism spectrum disorder (ASD), but the results have been inconsistent. The purpose of this study was to explore the association between BCAA concentrations and the risk of ASD. A total of 313 participants were recruited from two tertiary referral hospitals from May 2018 to July 2021. Concentrations of BCAAs in dried blood spots were analyzed using liquid chromatography-tandem mass spectrometry-based analysis. Multivariate analyses and restricted cubic spline models were used to identify the association between BCAAs and the risk of ASD, and a nomogram was developed by using multivariate logistic regression and the risk was determined by receiver operating characteristic curve analysis and calibration curve analysis. Concentrations of total BCAA, valine, and leucine/isoleucine were higher in the ASD group, and all of them were positively and non-linearly associated with the risk of ASD even after adjusting for potential confounding factors such as age, gender, body mass index, and concentrations of BCAAs (P < 0.05). The nomogram integrating total BCAA and valine showed a good discriminant AUC value of 0.756 (95% CI 0.676-0.835). The model could yield net benefits across a reasonable range of risk thresholds. In the stratified analysis, the diagnostic ability of the model was more pronounced in children older than 3 years. We provide evidence that increased levels of BCAAs are associated with the risk of ASD, and the nomogram model of BCAAs presented here can serve as a marker for the early diagnosis of ASD.

Identifiants

pubmed: 38265552
doi: 10.1007/s12035-024-03965-4
pii: 10.1007/s12035-024-03965-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Needham BD, Adame MD, Serena G, Rose DR, Preston GM, Conrad MC, Campbell AS, Donabedian DH et al (2021) Plasma and fecal metabolite profiles in autism spectrum disorder. Biol Psychiatry 89:451–462. https://doi.org/10.1016/j.biopsych.2020.09.025
doi: 10.1016/j.biopsych.2020.09.025 pubmed: 33342544
Cheroni C, Caporale N, Testa G (2020) Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism 11:69. https://doi.org/10.1186/s13229-020-00370-1
doi: 10.1186/s13229-020-00370-1 pubmed: 32912338 pmcid: 7488083
Tărlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M, Galluccio M, Tesulov M et al (2016) Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167:1481–1494. https://doi.org/10.1016/j.cell.2016.11.013
doi: 10.1016/j.cell.2016.11.013 pubmed: 27912058 pmcid: 5554935
Maynard TM, Manzini MC (2017) Balancing act: maintaining amino acid levels in the autistic brain. Neuron 93:476–479. https://doi.org/10.1016/j.neuron.2017.01.015
doi: 10.1016/j.neuron.2017.01.015 pubmed: 28182903
Qian XH, Liu XL, Zhang B, Lin Y, Xu JH, Ding GY, Tang HD (2023) Investigating the causal association between branched-chain amino acids and Alzheimer’s disease: a bidirectional Mendelian randomized study. Front Nutr 10:1103303. https://doi.org/10.3389/fnut.2023.1103303
doi: 10.3389/fnut.2023.1103303 pubmed: 37063328 pmcid: 10102518
Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, Xie Z, Chu X, Yang J, Wang H, Chang S, Gong Y, Ruan L, Zhang G, Yan S, Lian W, Du C, Yang D, Zhang Q et al (2019) Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 29:787–803. https://doi.org/10.1038/s41422-019-0216-x
doi: 10.1038/s41422-019-0216-x pubmed: 31488882 pmcid: 6796854
Meguid NA, Hashem HS, Ghanem MH, Helal SA, Semenova Y, Hashem S, Hashish A, Chirumbolo S, Elwan AM, Bjørklund G (2023) Evaluation of branched-chain amino acids in children with autism spectrum disorder and epilepsy. Mol Neurobiol 60:1997–2004. https://doi.org/10.1007/s12035-022-03202-w
doi: 10.1007/s12035-022-03202-w pubmed: 36600079
Zheng HF, Wang WQ, Li XM, Rauw G, Baker GB (2017) Body fluid levels of neuroactive amino acids in autism spectrum disorders: a review of the literature. Amino Acids 49:57–65. https://doi.org/10.1007/s00726-016-2332-y
doi: 10.1007/s00726-016-2332-y pubmed: 27686223
Aspragkathou DD, Spilioti MG, Gkampeta A, Dalpa E, Holeva V, Papadopoulou MT, Serdari A, Dafoulis V, Zafeiriou DI, Evangeliou AE (2023) Branched-chain amino acids as adjunctive-alternative treatment in patients with autism: a pilot study. Br J Nutr:1–9. https://doi.org/10.1017/S0007114523001496
Chen WX, Chen YR, Peng MZ, Liu X, Cai YN, Huang ZF, Yang SY, Huang JY, Wang RH, Yi P, Liu L (2023) Plasma amino acid profile in children with autism spectrum disorder in southern China: analysis of 110 cases. J Autism Dev Disord. https://doi.org/10.1007/s10803-022-05829-z
Tirouvanziam R, Obukhanych TV, Laval J, Aronov PA, Libove R, Banerjee AG, Parker KJ, O’Hara R, Herzenberg LA, Herzenberg LA, Hardan AY (2012) Distinct plasma profile of polar neutral amino acids, leucine, and glutamate in children with autism spectrum disorders. J Autism Dev Disord 42:827–836. https://doi.org/10.1007/s10803-011-1314-x
doi: 10.1007/s10803-011-1314-x pubmed: 21713591
Chamtouri M, Merghni A, Salazar N, Redruello B, Gaddour N, Mastouri M, Arboleya S, de Los Reyes-Gavilán CG (2023) An overview on fecal profiles of amino acids and related amino-derived compounds in children with autism spectrum disorder in Tunisia. Molecules 28. https://doi.org/10.3390/molecules28073269
Panjwani AA, Ji Y, Fahey JW, Palmer A, Wang G, Hong X, Zuckerman B, Wang X (2019) Maternal obesity/diabetes, plasma branched-chain amino acids, and autism spectrum disorder risk in urban low-income children: evidence of sex difference. Autism Res 12:1562–1573. https://doi.org/10.1002/aur.2177
doi: 10.1002/aur.2177 pubmed: 31400063 pmcid: 6900287
Raghavan R, Anand NS, Wang G, Hong X, Pearson C, Zuckerman B, Xie H, Wang X (2022) Association between cord blood metabolites in tryptophan pathway and childhood risk of autism spectrum disorder and attention-deficit hyperactivity disorder. Transl Psychiatry 12:270. https://doi.org/10.1038/s41398-022-01992-0
doi: 10.1038/s41398-022-01992-0 pubmed: 35810183 pmcid: 9271093
Wagner M, Tonoli D, Varesio E, Hopfgartner G (2016) The use of mass spectrometry to analyze dried blood spots. Mass Spectrom Rev 35:361–438. https://doi.org/10.1002/mas.21441
doi: 10.1002/mas.21441 pubmed: 25252132
Zhao D, Ni M, Jia C, Li X, Zhu X, Liu S, Su L, Lv S, Wang L, Jia L (2022) Genomic analysis of 9 infants with hypermethioninemia by whole-exome sequencing among in Henan, China. Clin Chim Acta 533:109–113. https://doi.org/10.1016/j.cca.2022.06.021
doi: 10.1016/j.cca.2022.06.021 pubmed: 35760084
Gruenbaum SE, Chen EC, Sandhu MRS, Deshpande K, Dhaher R, Hersey D, Eid T (2019) Branched-chain amino acids and seizures: a systematic review of the literature. CNS Drugs 33:755–770. https://doi.org/10.1007/s40263-019-00650-2
doi: 10.1007/s40263-019-00650-2 pubmed: 31313139
Scaini G, Comim CM, Oliveira GM, Pasquali MA, Quevedo J, Gelain DP, Moreira JC, Schuck PF, Ferreira GC, Bogo MR, Streck EL (2013) Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis 36:721–730. https://doi.org/10.1007/s10545-012-9549-z
doi: 10.1007/s10545-012-9549-z pubmed: 23109061
Cole JT, Sweatt AJ, Hutson SM (2012) Expression of mitochondrial branched-chain aminotransferase and α-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism. Front Neuroanat 6:18. https://doi.org/10.3389/fnana.2012.00018
doi: 10.3389/fnana.2012.00018 pubmed: 22654736 pmcid: 3361127
Higuchi Y, Tada T, Nakachi T, Arakawa H (2023) Serotonergic circuit dysregulation underlying autism-related phenotypes in BTBR mouse model of autism. Neuropharmacology 237:109634. https://doi.org/10.1016/j.neuropharm.2023.109634
doi: 10.1016/j.neuropharm.2023.109634 pubmed: 37301467
Chao OY, Pathak SS, Zhang H, Dunaway N, Li JS, Mattern C, Nikolaus S, Huston JP, Yang YM (2020) Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol Brain 13:111. https://doi.org/10.1186/s13041-020-00649-7
doi: 10.1186/s13041-020-00649-7 pubmed: 32778145 pmcid: 7418402
Alvestad S, Hammer J, Qu H, Håberg A, Ottersen OP, Sonnewald U (2011) Reduced astrocytic contribution to the turnover of glutamate, glutamine, and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy. J Cereb Blood Flow Metab 31:1675–1686. https://doi.org/10.1038/jcbfm.2011.36
doi: 10.1038/jcbfm.2011.36 pubmed: 21522161 pmcid: 3170943
Neinast M, Murashige D, Arany Z (2019) Branched chain amino acids. Annu Rev Physiol 81:139–164. https://doi.org/10.1146/annurev-physiol-020518-114455
doi: 10.1146/annurev-physiol-020518-114455 pubmed: 30485760
Rose S, Bennuri SC, Davis JE, Wynne R, Slattery JC, Tippett M, Delhey L, Melnyk S, Kahler SG, MacFabe DF, Frye RE (2018) Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psychiatry 8:42. https://doi.org/10.1038/s41398-017-0089-z
doi: 10.1038/s41398-017-0089-z pubmed: 29391397 pmcid: 5804031
Du C, Liu WJ, Yang J, Zhao SS, Liu HX (2022) The role of branched-chain amino acids and branched-chain α-keto acid dehydrogenase kinase in metabolic disorders. Front Nutr 9:932670. https://doi.org/10.3389/fnut.2022.932670
doi: 10.3389/fnut.2022.932670 pubmed: 35923208 pmcid: 9339795
Zinnanti WJ, Lazovic J, Griffin K, Skvorak KJ, Paul HS, Homanics GE, Bewley MC, Cheng KC, Lanoue KF, Flanagan JM (2009) Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain 132:903–918. https://doi.org/10.1093/brain/awp024
doi: 10.1093/brain/awp024 pubmed: 19293241 pmcid: 2668944
Kaddurah-Daouk R, Bogdanov MB, Wikoff WR, Zhu H, Boyle SH, Churchill E, Wang Z, Rush AJ, Krishnan RR, Pickering E, Delnomdedieu M, Fiehn O (2013) Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo. Transl Psychiatry 3:e223. https://doi.org/10.1038/tp.2012.142
doi: 10.1038/tp.2012.142 pubmed: 23340506 pmcid: 3566722
Shen J, Guo H, Liu S, Jin W, Zhang ZW, Zhang Y, Liu K, Mao S, Zhou Z, Xie L, Wang G, Hao H, Liang Y (2023) Aberrant branched-chain amino acid accumulation along the microbiota-gut-brain axis: crucial targets affecting the occurrence and treatment of ischaemic stroke. Br J Pharmacol 180:347–368. https://doi.org/10.1111/bph.15965
doi: 10.1111/bph.15965 pubmed: 36181407
Li H, Ye D, Xie W, Hua F, Yang Y, Wu J, Gu A, Ren Y, Mao K (2018) Defect of branched-chain amino acid metabolism promotes the development of Alzheimer’s disease by targeting the mTOR signaling. Biosci Rep 38. https://doi.org/10.1042/bsr20180127
Gruenbaum SE, Dhaher R, Rapuano A, Zaveri HP, Tang A, de Lanerolle N, Eid T (2019) Effects of branched-chain amino acid supplementation on spontaneous seizures and neuronal viability in a model of mesial temporal lobe epilepsy. J Neurosurg Anesthesiol 31:247–256. https://doi.org/10.1097/ana.0000000000000499
doi: 10.1097/ana.0000000000000499 pubmed: 29620688 pmcid: 6170745
Coppola A, Wenner BR, Ilkayeva O, Stevens RD, Maggioni M, Slotkin TA, Levin ED, Newgard CB (2013) Branched-chain amino acids alter neurobehavioral function in rats. Am J Physiol Endocrinol Metab 304:E405–E413. https://doi.org/10.1152/ajpendo.00373.2012
doi: 10.1152/ajpendo.00373.2012 pubmed: 23249694
Horgusluoglu E, Neff R, Song WM, Wang M, Wang Q, Arnold M, Krumsiek J, Galindo PB, Ming C, Nho K, Kastenmüller G, Han X, Baillie R, Zeng Q, Andrews S, Cheng H, Hao K, Goate A, Bennett DA et al (2022) Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer’s disease. Alzheimers Dement 18:1260–1278. https://doi.org/10.1002/alz.12468
doi: 10.1002/alz.12468 pubmed: 34757660
McCann JR, Rawls YY (2023) Essential amino acid metabolites as chemical mediators of host-microbe interaction in the Gut. Annu Rev Microbiol 77:479–497. https://doi.org/10.1146/annurev-micro-032421-111819
doi: 10.1146/annurev-micro-032421-111819 pubmed: 37339735

Auteurs

Qi Gao (Q)

Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.

Dan Bi (D)

Department of Pediatrics, Qilu Hospital of Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China.

Bingbing Li (B)

Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China.

Min Ni (M)

Department of Henan Newborn Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450054, China.

Dizhou Pang (D)

Center for Child Behavioral Development, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.

Xian Li (X)

Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.

Xiaoli Zhang (X)

Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China.

Yiran Xu (Y)

Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China.

Qiang Zhao (Q)

Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. farutong@163.com.

Changlian Zhu (C)

Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China. changlian.zhu@neuro.gu.se.
Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden. changlian.zhu@neuro.gu.se.

Classifications MeSH