Endoplasmic reticulum stress interferes with the development of type 1 regulating T cells.
CD4 T cell
Colitis
Endoplasmic reticulum stress
Immune regulation
Immunity
Journal
Inflammation research : official journal of the European Histamine Research Society ... [et al.]
ISSN: 1420-908X
Titre abrégé: Inflamm Res
Pays: Switzerland
ID NLM: 9508160
Informations de publication
Date de publication:
24 Jan 2024
24 Jan 2024
Historique:
received:
17
08
2022
accepted:
14
12
2023
revised:
12
12
2023
medline:
24
1
2024
pubmed:
24
1
2024
entrez:
24
1
2024
Statut:
aheadofprint
Résumé
A variety of stimuli can cause endoplasmic reticulum (ER) stress, which is a common cellular reaction. It is not yet clear how ER stress contributes to the pathogenesis of ulcerative colitis (UC). The deregulation of regulatory T cell (Treg) is associated with UC. The goal of this study is to shed light on how ER stress affects Treg's development. CD4 The presence of ER stress in peripheral CD4 The synergistic effects of ER stress and MNP interfere with the development of Tr1 cells. The development of Tr1 from CD4
Sections du résumé
BACKGROUND
BACKGROUND
A variety of stimuli can cause endoplasmic reticulum (ER) stress, which is a common cellular reaction. It is not yet clear how ER stress contributes to the pathogenesis of ulcerative colitis (UC). The deregulation of regulatory T cell (Treg) is associated with UC. The goal of this study is to shed light on how ER stress affects Treg's development.
METHODS
METHODS
CD4
RESULTS
RESULTS
The presence of ER stress in peripheral CD4
CONCLUSIONS
CONCLUSIONS
The synergistic effects of ER stress and MNP interfere with the development of Tr1 cells. The development of Tr1 from CD4
Identifiants
pubmed: 38265686
doi: 10.1007/s00011-023-01841-w
pii: 10.1007/s00011-023-01841-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015;12:205–17.
doi: 10.1038/nrgastro.2015.34
pubmed: 25732745
Chapman TP, Gomes CF, Louis E, Colombel JF, Satsangi J. De-escalation of immunomodulator and biological therapy in inflammatory bowel disease. Lancet Gastroenterol Hepatol. 2020;5:63–79.
doi: 10.1016/S2468-1253(19)30186-4
pubmed: 31818473
Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res. 2019;2019: 7247238.
doi: 10.1155/2019/7247238
pubmed: 31886308
pmcid: 6914932
Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–34.
doi: 10.1038/nature06005
pubmed: 17653185
Saez A, Gomez-Bris R, Herrero-Fernandez B, Mingorance C, Rius C, Gonzalez-Granado JM. Innate lymphoid cells in intestinal homeostasis and inflammatory bowel disease. Int J Mol Sci. 2021;22: 7618.
doi: 10.3390/ijms22147618
pubmed: 34299236
pmcid: 8307624
Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019;576:143–8.
doi: 10.1038/s41586-019-1785-z
pubmed: 31776512
pmcid: 6949019
Clough JN, Omer OS, Tasker S, Lord GM, Irving PM. Regulatory T-cell therapy in Crohn’s disease: challenges and advances. Gut. 2020;69:942–52.
doi: 10.1136/gutjnl-2019-319850
pubmed: 31980447
Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2015;10:173–94.
doi: 10.1146/annurev-pathol-012513-104649
pubmed: 25387057
Bettigole SE, Glimcher LH. Endoplasmic reticulum stress in immunity. Annu Rev Immunol. 2015;33:107–38.
doi: 10.1146/annurev-immunol-032414-112116
pubmed: 25493331
Frakes AE, Dillin A. The UPR(ER): sensor and coordinator of organismal homeostasis. Mol Cell. 2017;66:761–71.
doi: 10.1016/j.molcel.2017.05.031
pubmed: 28622521
Powell N, Pantazi E, Pavlidis P, Tsakmaki A, Li K, Yang F, et al. Interleukin-22 orchestrates a pathological endoplasmic reticulum stress response transcriptional programme in colonic epithelial cells. Gut. 2020;69:578–90.
doi: 10.1136/gutjnl-2019-318483
pubmed: 31792136
Liu C, Mo LH, Feng BS, Jin QR, Li Y, Lin J, et al. Twist1 contributes to developing and sustaining corticosteroid resistance in ulcerative colitis. Theranostics. 2021;11:7797–812.
doi: 10.7150/thno.62256
pubmed: 34335965
pmcid: 8315068
Zhao CN, Xu Z, Wu GC, Mao YM, Liu LN, Qian W, et al. Emerging role of air pollution in autoimmune diseases. Autoimmun Rev. 2019;18:607–14.
doi: 10.1016/j.autrev.2018.12.010
pubmed: 30959217
Cortez JT, Montauti E, Shifrut E, Gatchalian J, Zhang Y, Shaked O, et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature. 2020;582:416–20.
doi: 10.1038/s41586-020-2246-4
pubmed: 32499641
pmcid: 7305989
de Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13:13–27.
doi: 10.1038/nrgastro.2015.186
pubmed: 26627550
Cook L, Stahl M, Han X, Nazli A, MacDonald KN, Wong MQ, et al. Suppressive and gut-reparative functions of human type 1 T regulatory cells. Gastroenterology. 2019;157:1584–98.
doi: 10.1053/j.gastro.2019.09.002
pubmed: 31513797
Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.
doi: 10.1016/0092-8674(93)80068-P
pubmed: 8402911
Schmitt H, Ulmschneider J, Billmeier U, Vieth M, Scarozza P, Sonnewald S, et al. The TLR9 agonist cobitolimod induces IL10-producing wound healing macrophages and regulatory T cells in ulcerative colitis. J Crohns Colitis. 2020;14:508–24.
doi: 10.1093/ecco-jcc/jjz170
pubmed: 31630153
Noya Y, Mikami Y, Taneda S, Mori Y, Suzuki AK, Ohkura K, et al. Improvement of an efficient separation method for chemicals in diesel exhaust particles: analysis for nitrophenols. Environ Sci Pollut Res Int. 2008;15:318–21.
doi: 10.1007/s11356-008-0006-3
pubmed: 18437438
Fukushima M, Fujisawa T, Katagi T, Takimoto Y. Metabolism of fenitrothion and conjugation of 3-methyl-4-nitrophenol in tomato plant (Lycopersicon esculentum). J Agric Food Chem. 2003;51:5016–23.
doi: 10.1021/jf034289q
pubmed: 12903963
Liu JQ, Li SS, Mo LH, Yu D, Geng XR, Hong JY, et al. Exposure to 3-methyl-4-nitrophenol facilitates development of intestinal allergy. Allergy. 2019;74:610–3.
doi: 10.1111/all.13648
pubmed: 30357863
Liu XY, Wu YJ, Song LJ, Zeng XH, Wang S, Liu JQ, et al. 3-Methyl-4-nitrophenol triggers nasal allergy by modulating dendritic cell properties. J Allergy Clin Immunol. 2019;143:1614-6.e7.
doi: 10.1016/j.jaci.2018.11.012
pubmed: 30472262
Li C, Taneda S, Suzuki AK, Furuta C, Watanabe G, Taya K. Anti-androgenic activity of 3-methyl-4-nitrophenol in diesel exhaust particles. Eur J Pharmacol. 2006;543:194–9.
doi: 10.1016/j.ejphar.2006.06.010
pubmed: 16822498
Li C, Takahashi S, Taneda S, Furuta C, Watanabe G, Suzuki AK, et al. Effects of 3-methyl-4-nitrophenol in diesel exhaust particles on the regulation of reproductive function in immature female Japanese quail (Coturnix japonica). J Reprod Dev. 2007;53:673–8.
doi: 10.1262/jrd.18133
pubmed: 17202750
Yang L, Ma S, Wan Y, Duan S, Ye S, Du S, et al. In vitro effect of 4-pentylphenol and 3-methyl-4-nitrophenol on murine splenic lymphocyte populations and cytokine/granzyme production. J Immunotoxicol. 2016;13:548–56.
doi: 10.3109/1547691X.2016.1140853
pubmed: 27031367
Di Conza G, Ho PC. ER stress responses: an emerging modulator for innate immunity. Cells. 2020;9:695.
doi: 10.3390/cells9030695
pubmed: 32178254
pmcid: 7140669
Cosovanu C, Neumann C. The many functions of Foxp3(+) regulatory T cells in the intestine. Front Immunol. 2020;11: 600973.
doi: 10.3389/fimmu.2020.600973
pubmed: 33193456
pmcid: 7606913