Inferring the genetic effects of serum homocysteine and vitamin B levels on autism spectral disorder through Mendelian randomization.
Autism spectral disorder
Causality
Homocysteine
Mendelian randomization
Vitamin B
Journal
European journal of nutrition
ISSN: 1436-6215
Titre abrégé: Eur J Nutr
Pays: Germany
ID NLM: 100888704
Informations de publication
Date de publication:
Apr 2024
Apr 2024
Historique:
received:
07
11
2023
accepted:
12
01
2024
pubmed:
24
1
2024
medline:
24
1
2024
entrez:
24
1
2024
Statut:
ppublish
Résumé
The previous studies have suggested that serum homocysteine (Hcy) and vitamin B levels are potentially related to autism spectrum disorder (ASD). However, the causality between their concentrations and ASD risk remains unclear. To elucidate this genetic association, we used a Mendelian randomization (MR) design. For this MR analysis, 47 single-nucleotide polymorphisms (SNPs)-13 related to Hcy, 13 to folate, 14 to vitamin B6, and 7 to vitamin B12-were obtained from a large-scale Genome-Wide Association Studies (GWAS) database and employed as instrumental variables (IVs). Our study used three approaches to calculate the MR estimates, including inverse-variance weighted (IVW) method, MR-Egger method, and weighted median (WM) method. Among these, the IVW method served as our primary MR method. False discovery rate (FDR) was implemented to correct for multiple comparisons. We also performed a series of sensitivity analyses, including Cochran's Q test, MR-Egger's intercept, MR-PRESSO, leave-one-out analysis, and the funnel plot. Univariable Mendelian randomization (UVMR) analysis revealed a statistical association between serum vitamin B12 levels and ASD risk (OR = 1.68, 95% CI 1.12-2.52, P = 0.01) using the IVW method. However, neither the WM method (OR = 1.57, 95% CI 0.93-2.66, P = 0.09) nor the MR-Egger method (OR = 2.33, 95% CI 0.48-11.19, P = 0.34) was significantly association with higher levels of serum vitamin B12 and ASD risk. Additionally, we found no evidence of causal relationships between serum levels of vitamin B6, folate, Hcy, and ASD risk. After correcting for the FDR, the causality between serum vitamin B12 levels and ASD risk remained significant (q value = 0.0270). Multivariate Mendelian randomization (MVMR) analysis indicated an independent association between elevated serum vitamin B12 levels and the risk of ASD (OR = 1.74, 95% CI 1.03-2.95, P = 0.03) using the IVW method, but this finding was inconsistent when using the WM method (OR = 1.73, 95% CI 0.89-3.36, P = 0.11) and MR-Egger method (OR = 1.60, 95% CI 0.95-2.71, P = 0.08). Furthermore, no causal associations were observed for serum levels of vitamin B6 and folate in MVMR analysis. Sensitivity analyses confirmed that these results were reliable. Our study indicated that elevated serum vitamin B12 levels might increase the risk of ASD. The potential implications of our results for ASD risk warrant validation in randomized clinical trials.
Identifiants
pubmed: 38265752
doi: 10.1007/s00394-024-03329-7
pii: 10.1007/s00394-024-03329-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
977-986Subventions
Organisme : China Rehabilitation Research Center
ID : 2022ZX-ZX-01
Organisme : China Rehabilitation Research Center
ID : 2022ZX-06
Organisme : Medical Health Science and Technology Project of Zhejiang Provincial Health Commission
ID : 2020KY443
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.
Références
Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. Lancet (London, England) 392(10146):508–520. https://doi.org/10.1016/s0140-6736(18)31129-2
doi: 10.1016/s0140-6736(18)31129-2
pubmed: 30078460
Hirota T, King BH (2023) Autism spectrum disorder: a review. JAMA 329(2):157–168. https://doi.org/10.1001/jama.2022.23661
doi: 10.1001/jama.2022.23661
pubmed: 36625807
Jennings L, Basiri R (2022) Amino acids, B vitamins, and choline may independently and collaboratively influence the incidence and core symptoms of autism spectrum disorder. Nutrients. https://doi.org/10.3390/nu14142896
doi: 10.3390/nu14142896
pubmed: 35889852
pmcid: 9318435
Wang L, Wang B, Wu C, Wang J, Sun M (2023) Autism spectrum disorder: neurodevelopmental risk factors, biological mechanism, and precision therapy. Int J Mol Sci. https://doi.org/10.3390/ijms24031819
doi: 10.3390/ijms24031819
pubmed: 38203719
pmcid: 10779407
Fuentes-Albero M, Cauli O (2018) Homocysteine levels in autism spectrum disorder: a clinical update. Endocr Metab Immune Disord Drug Targets 18(4):289–296. https://doi.org/10.2174/1871530318666180213110815
doi: 10.2174/1871530318666180213110815
pubmed: 29437021
Levine SZ, Kodesh A, Viktorin A, Smith L, Uher R, Reichenberg A, Sandin S (2018) Association of maternal use of folic acid and multivitamin supplements in the periods before and during pregnancy with the risk of autism spectrum disorder in offspring. JAMA Psychiat 75(2):176–184. https://doi.org/10.1001/jamapsychiatry.2017.4050
doi: 10.1001/jamapsychiatry.2017.4050
Kaul S, Zadeh AA, Shah PK (2006) Homocysteine hypothesis for atherothrombotic cardiovascular disease: not validated. J Am Coll Cardiol 48(5):914–923. https://doi.org/10.1016/j.jacc.2006.04.086
doi: 10.1016/j.jacc.2006.04.086
pubmed: 16949480
Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, Evans DM, Smith GD (2017) Recent developments in mendelian randomization studies. Curr Epidemiol Rep 4(4):330–345. https://doi.org/10.1007/s40471-017-0128-6
doi: 10.1007/s40471-017-0128-6
pubmed: 29226067
pmcid: 5711966
Bowden J, Holmes MV (2019) Meta-analysis and Mendelian randomization: a review. Res Synth Methods 10(4):486–496. https://doi.org/10.1002/jrsm.1346
doi: 10.1002/jrsm.1346
pubmed: 30861319
pmcid: 6973275
Sekula P, Del Greco MF, Pattaro C, Köttgen A (2016) Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol 27(11):3253–3265. https://doi.org/10.1681/asn.2016010098
doi: 10.1681/asn.2016010098
pubmed: 27486138
pmcid: 5084898
Gagliano Taliun SA, Evans DM (2021) Ten simple rules for conducting a mendelian randomization study. PLoS Comput Biol 17(8):e1009238. https://doi.org/10.1371/journal.pcbi.1009238
doi: 10.1371/journal.pcbi.1009238
pmcid: 8360373
De La Barrera B, Manousaki D (2023) Serum 25-hydroxyvitamin D levels and youth-onset type 2 diabetes: a two-sample mendelian randomization study. Nutrients. https://doi.org/10.3390/nu15041016
doi: 10.3390/nu15041016
pubmed: 37630722
pmcid: 10458167
Flatby HM, Ravi A, Damås JK, Solligård E, Rogne T (2023) Circulating levels of micronutrients and risk of infections: a Mendelian randomization study. BMC Med 21(1):84. https://doi.org/10.1186/s12916-023-02780-3
doi: 10.1186/s12916-023-02780-3
pubmed: 36882828
pmcid: 9993583
Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, VanderWeele TJ, Higgins JPT, Timpson NJ, Dimou N, Langenberg C, Golub RM, Loder EW, Gallo V, Tybjaerg-Hansen A, Davey Smith G, Egger M, Richards JB (2021) Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement. JAMA 326(16):1614–1621. https://doi.org/10.1001/jama.2021.18236
doi: 10.1001/jama.2021.18236
pubmed: 34698778
Li MY, Kwok MK, Schooling CM (2021) Investigating effects of plasma apolipoprotein e on ischemic heart disease using Mendelian randomization study. Nutrients. https://doi.org/10.3390/nu13072215
doi: 10.3390/nu13072215
pubmed: 35011000
pmcid: 8746960
Burgess S, Thompson SG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40(3):755–764. https://doi.org/10.1093/ije/dyr036
doi: 10.1093/ije/dyr036
pubmed: 21414999
Wu F, Huang Y, Hu J, Shao Z (2020) Mendelian randomization study of inflammatory bowel disease and bone mineral density. BMC Med 18(1):312. https://doi.org/10.1186/s12916-020-01778-5
doi: 10.1186/s12916-020-01778-5
pubmed: 33167994
pmcid: 7654011
Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, Butterworth AS, Staley JR (2019) PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics (Oxford, England) 35(22):4851–4853. https://doi.org/10.1093/bioinformatics/btz469
doi: 10.1093/bioinformatics/btz469
pubmed: 31233103
van Meurs JB, Pare G, Schwartz SM, Hazra A, Tanaka T, Vermeulen SH, Cotlarciuc I, Yuan X, Mälarstig A, Bandinelli S, Bis JC, Blom H, Brown MJ, Chen C, Chen YD, Clarke RJ, Dehghan A, Erdmann J, Ferrucci L, Hamsten A, Hofman A, Hunter DJ, Goel A, Johnson AD, Kathiresan S, Kampman E, Kiel DP, Kiemeney LA, Chambers JC, Kraft P, Lindemans J, McKnight B, Nelson CP, O’Donnell CJ, Psaty BM, Ridker PM, Rivadeneira F, Rose LM, Seedorf U, Siscovick DS, Schunkert H, Selhub J, Ueland PM, Vollenweider P, Waeber G, Waterworth DM, Watkins H, Witteman JC, den Heijer M, Jacques P, Uitterlinden AG, Kooner JS, Rader DJ, Reilly MP, Mooser V, Chasman DI, Samani NJ, Ahmadi KR (2013) Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am J Clin Nutr 98(3):668–676. https://doi.org/10.3945/ajcn.112.044545
doi: 10.3945/ajcn.112.044545
pubmed: 23824729
pmcid: 4321227
Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, Pallesen J, Agerbo E, Andreassen OA, Anney R, Awashti S, Belliveau R, Bettella F, Buxbaum JD, Bybjerg-Grauholm J, Bækvad-Hansen M, Cerrato F, Chambert K, Christensen JH, Churchhouse C, Dellenvall K, Demontis D, De Rubeis S, Devlin B, Djurovic S, Dumont AL, Goldstein JI, Hansen CS, Hauberg ME, Hollegaard MV, Hope S, Howrigan DP, Huang H, Hultman CM, Klei L, Maller J, Martin J, Martin AR, Moran JL, Nyegaard M, Nærland T, Palmer DS, Palotie A, Pedersen CB, Pedersen MG, dPoterba T, Poulsen JB, Pourcain BS, Qvist P, Rehnström K, Reichenberg A, Reichert J, Robinson EB, Roeder K, Roussos P, Saemundsen E, Sandin S, Satterstrom FK, Davey Smith G, Stefansson H, Steinberg S, Stevens CR, Sullivan PF, Turley P, Walters GB, Xu X, Stefansson K, Geschwind DH, Nordentoft M, Hougaard DM, Werge T, Mors O, Mortensen PB, Neale BM, Daly MJ, Børglum AD (2019) Identification of common genetic risk variants for autism spectrum disorder. Nat Genet 51(3):431–444. https://doi.org/10.1038/s41588-019-0344-8
doi: 10.1038/s41588-019-0344-8
pubmed: 30804558
pmcid: 6454898
Triozzi JL, Hsi RS, Wang G, Akwo EA, Wheless L, Chen HC, Tao R, Ikizler TA, Robinson-Cohen C, Hung AM (2023) Mendelian randomization analysis of genetic proxies of Thiazide diuretics and the reduction of kidney stone risk. JAMA Netw Open 6(11):e2343290. https://doi.org/10.1001/jamanetworkopen.2023.43290
doi: 10.1001/jamanetworkopen.2023.43290
pubmed: 37962888
pmcid: 10646726
Birney E (2022) Mendelian randomization. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a041302
doi: 10.1101/cshperspect.a041302
pubmed: 34872952
Pierce BL, Burgess S (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol 178(7):1177–1184. https://doi.org/10.1093/aje/kwt084
doi: 10.1093/aje/kwt084
pubmed: 23863760
pmcid: 3783091
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife. https://doi.org/10.7554/eLife.34408
doi: 10.7554/eLife.34408
pubmed: 29846171
pmcid: 5976434
Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377–389. https://doi.org/10.1007/s10654-017-0255-x
doi: 10.1007/s10654-017-0255-x
pubmed: 28527048
pmcid: 5506233
Sanderson E, Davey Smith G, Windmeijer F, Bowden J (2019) An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int J Epidemiol 48(3):713–727. https://doi.org/10.1093/ije/dyy262
doi: 10.1093/ije/dyy262
pubmed: 30535378
Yin KJ, Huang JX, Wang P, Yang XK, Tao SS, Li HM, Ni J, Pan HF (2022) No genetic causal association between periodontitis and arthritis: a bidirectional two-sample mendelian randomization analysis. Front Immunol 13:808832. https://doi.org/10.3389/fimmu.2022.808832
doi: 10.3389/fimmu.2022.808832
pubmed: 35154127
pmcid: 8825874
Huo Z, Ge F, Li C, Cheng H, Lu Y, Wang R, Wen Y, Yue K, Pan Z, Peng H, Wu X, Liang H, He J, Liang W (2021) Genetically predicted insomnia and lung cancer risk: a Mendelian randomization study. Sleep Med 87:183–190. https://doi.org/10.1016/j.sleep.2021.06.044
doi: 10.1016/j.sleep.2021.06.044
pubmed: 34627121
Glickman ME, Rao SR, Schultz MR (2014) False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol 67(8):850–857. https://doi.org/10.1016/j.jclinepi.2014.03.012
doi: 10.1016/j.jclinepi.2014.03.012
pubmed: 24831050
Wang Q, Dai H, Hou T, Hou Y, Wang T, Lin H, Zhao Z, Li M, Zheng R, Wang S, Lu J, Xu Y, Liu R, Ning G, Wang W, Bi Y, Zheng J, Xu M (2023) Dissecting causal relationships between gut microbiota, blood metabolites, and stroke: a Mendelian randomization study. J Stroke 25(3):350–360. https://doi.org/10.5853/jos.2023.00381
doi: 10.5853/jos.2023.00381
pubmed: 37813672
pmcid: 10574297
Zuber V, Cameron A, Myserlis EP, Bottolo L, Fernandez-Cadenas I, Burgess S, Anderson CD, Dawson J, Gill D (2021) Leveraging genetic data to elucidate the relationship between COVID-19 and ischemic stroke. J Am Heart Assoc 10(22):e022433. https://doi.org/10.1161/jaha.121.022433
doi: 10.1161/jaha.121.022433
pubmed: 34755518
pmcid: 8751930
Yao S, Zhang M, Dong SS, Wang JH, Zhang K, Guo J, Guo Y, Yang TL (2022) Bidirectional two-sample Mendelian randomization analysis identifies causal associations between relative carbohydrate intake and depression. Nat Hum Behav 6(11):1569–1576. https://doi.org/10.1038/s41562-022-01412-9
doi: 10.1038/s41562-022-01412-9
pubmed: 35851841
Sanderson E (2021) Multivariable Mendelian randomization and mediation. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a038984
doi: 10.1101/cshperspect.a038984
pubmed: 32341063
pmcid: 7849347
McKeever MP, Weir DG, Molloy A, Scott JM (1991) Betaine-homocysteine methyltransferase: organ distribution in man, pig and rat and subcellular distribution in the rat. Clin Sci (London, England: 1979) 81(4):551–556. https://doi.org/10.1042/cs0810551
doi: 10.1042/cs0810551
Guo M, Li L, Zhang Q, Chen L, Dai Y, Liu L, Feng J, Cai X, Cheng Q, Chen J, Wei H, Li T (2020) Vitamin and mineral status of children with autism spectrum disorder in Hainan Province of China: associations with symptoms. Nutr Neurosci 23(10):803–810. https://doi.org/10.1080/1028415x.2018.1558762
doi: 10.1080/1028415x.2018.1558762
pubmed: 30570388
Erden S, Akbaş İleri B, Sadıç Çelikkol Ç, Nalbant K, Kılınç İ, Yazar A (2022) Serum B12, homocysteine, and anti-parietal cell antibody levels in children with autism. Int J Psychiatry Clin Pract 26(1):8–13. https://doi.org/10.1080/13651501.2021.1906906
doi: 10.1080/13651501.2021.1906906
pubmed: 33823740
Al-Farsi YM, Waly MI, Deth RC, Al-Sharbati MM, Al-Shafaee M, Al-Farsi O, Al-Khaduri MM, Gupta I, Ali A, Al-Khalili M, Al-Adawi S, Hodgson NW, Ouhtit A (2013) Low folate and vitamin B12 nourishment is common in Omani children with newly diagnosed autism. Nutrition (Burbank, Los Angeles County, Calif) 29(3):537–541. https://doi.org/10.1016/j.nut.2012.09.014
doi: 10.1016/j.nut.2012.09.014
pubmed: 23287069
Esteban-Figuerola P, Canals J, Fernández-Cao JC, Arija Val V (2019) Differences in food consumption and nutritional intake between children with autism spectrum disorders and typically developing children: a meta-analysis. Autism Int J Res Pract 23(5):1079–1095. https://doi.org/10.1177/1362361318794179
doi: 10.1177/1362361318794179
Prades N, Varela E, Flamarique I, Deulofeu R, Baeza I (2023) Water-soluble vitamin insufficiency, deficiency and supplementation in children and adolescents with a psychiatric disorder: a systematic review and meta-analysis. Nutr Neurosci 26(2):85–107. https://doi.org/10.1080/1028415x.2021.2020402
doi: 10.1080/1028415x.2021.2020402
pubmed: 35034564
Bertoglio K, Jill James S, Deprey L, Brule N, Hendren RL (2010) Pilot study of the effect of methyl B12 treatment on behavioral and biomarker measures in children with autism. J Altern Complement Med (New York, NY) 16(5):555–560. https://doi.org/10.1089/acm.2009.0177
doi: 10.1089/acm.2009.0177
Raghavan R, Riley AW, Volk H, Caruso D, Hironaka L, Sices L, Hong X, Wang G, Ji Y, Brucato M, Wahl A, Stivers T, Pearson C, Zuckerman B, Stuart EA, Landa R, Fallin MD, Wang X (2018) Maternal multivitamin intake, plasma folate and vitamin B(12) levels and autism spectrum disorder risk in offspring. Paediatr Perinat Epidemiol 32(1):100–111. https://doi.org/10.1111/ppe.12414
doi: 10.1111/ppe.12414
pubmed: 28984369
Sourander A, Silwal S, Surcel HM, Hinkka-Yli-Salomäki S, Upadhyaya S, McKeague IW, Cheslack-Postava K, Brown AS (2023) Maternal serum vitamin B12 during pregnancy and offspring autism spectrum disorder. Nutrients. https://doi.org/10.3390/nu15082009
doi: 10.3390/nu15082009
pubmed: 37111227
pmcid: 10146734
Calderón-Ospina CA, Nava-Mesa MO (2020) B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther 26(1):5–13. https://doi.org/10.1111/cns.13207
doi: 10.1111/cns.13207
pubmed: 31490017
Stenberg R, Böttiger A, Nilsson TK (2020) High levels of vitamin B12 are fairly common in children with cerebral palsy. Acta paediatrica (Oslo, Norway: 1992) 109(7):1493–1494. https://doi.org/10.1111/apa.15195
doi: 10.1111/apa.15195
pubmed: 32056285
Hope S, Naerland T, Høiland AL, Torske T, Malt E, Abrahamsen T, Nerhus M, Wedervang-Resell K, Lonning V, Johannessen J, Steen NE, Agartz I, Stenberg N, Hundhausen T, Mørkrid L, Andreassen OA (2020) Higher vitamin B12 levels in neurodevelopmental disorders than in healthy controls and schizophrenia: a comparison among participants between 2 and 53 years. FASEB J Off Publ Fed Am Soc Exp Biol 34(6):8114–8124. https://doi.org/10.1096/fj.201900855RRR
doi: 10.1096/fj.201900855RRR
Ducker GS, Rabinowitz JD (2017) One-carbon metabolism in health and disease. Cell Metab 25(1):27–42. https://doi.org/10.1016/j.cmet.2016.08.009
doi: 10.1016/j.cmet.2016.08.009
pubmed: 27641100
Tremblay MW, Jiang YH (2019) DNA methylation and susceptibility to autism spectrum disorder. Annu Rev Med 70:151–166. https://doi.org/10.1146/annurev-med-120417-091431
doi: 10.1146/annurev-med-120417-091431
pubmed: 30691368
pmcid: 6597259
Ford TC, Downey LA, Simpson T, McPhee G, Oliver C, Stough C (2018) The effect of a high-dose vitamin B multivitamin supplement on the relationship between brain metabolism and blood biomarkers of oxidative stress: a randomized control trial. Nutrients. https://doi.org/10.3390/nu10121860
doi: 10.3390/nu10121860
pubmed: 30513795
pmcid: 6316433
Zhu X, Raina AK, Lee HG, Chao M, Nunomura A, Tabaton M, Petersen RB, Perry G, Smith MA (2003) Oxidative stress and neuronal adaptation in Alzheimer disease: the role of SAPK pathways. Antioxid Redox Signal 5(5):571–576. https://doi.org/10.1089/152308603770310220
doi: 10.1089/152308603770310220
pubmed: 14580312