Ultrafast and persistent photoinduced phase transition at room temperature monitored by streaming powder diffraction.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 Jan 2024
Historique:
received: 22 06 2023
accepted: 13 12 2023
medline: 25 1 2024
pubmed: 25 1 2024
entrez: 24 1 2024
Statut: epublish

Résumé

Ultrafast photoinduced phase transitions at room temperature, driven by a single laser shot and persisting long after stimuli, represent emerging routes for ultrafast control over materials' properties. Time-resolved studies provide fundamental mechanistic insight into far-from-equilibrium electronic and structural dynamics. Here we study the photoinduced phase transformation of the Rb

Identifiants

pubmed: 38267429
doi: 10.1038/s41467-023-44440-3
pii: 10.1038/s41467-023-44440-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

267

Subventions

Organisme : MEXT | Japan Science and Technology Agency (JST)
ID : FOREST Program (JPMJFR213Q)
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 22H02046
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 20H00369
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-19-CE30-0004 ELECTROPHONE
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-19-CE07-0027 SMAC

Informations de copyright

© 2024. The Author(s).

Références

Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077 (2017).
pubmed: 29066824 doi: 10.1038/nmat5017
Fleming, G. R. Concluding remarks: directing and controlling materials and molecules. Faraday Discuss. 237, 419–427 (2022).
pubmed: 36062843 doi: 10.1039/D2FD00133K
Johnson, S. L. Spiers memorial lecture: from optical to THz control of materials. Faraday Discuss. 237, 9–26 (2022).
pubmed: 35748486 pmcid: 9477182 doi: 10.1039/D2FD00098A
Koshihara, S. et al. Challenges for developing photo-induced phase transition (PIPT) systems: from classical (incoherent) to quantum (coherent) control of PIPT dynamics. Phys. Rep. 942, 1–61 (2022).
doi: 10.1016/j.physrep.2021.10.003
Kirschner, M. S. et al. Photoinduced, reversible phase transitions in all-inorganic perovskite nanocrystals. Nat. Commun. 10, 504 (2019).
pubmed: 30700706 pmcid: 6353988 doi: 10.1038/s41467-019-08362-3
Mariette, C. et al. Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction. Nat. Commun. 12, 1239 (2021).
pubmed: 33623010 pmcid: 7902810 doi: 10.1038/s41467-021-21316-y
Yue, X. et al. Real-time observation of the buildup of polaron in alpha-FAPbI(3). Nat. Commun. 14, 917 (2023).
pubmed: 36801865 pmcid: 9938110 doi: 10.1038/s41467-023-36652-4
Smit, B. et al. Ultrafast pathways of the photoinduced insulator–metal transition in a low-dimensional organic conductor. Adv. Mater. 31, 1900652 (2019).
doi: 10.1002/adma.201900652
Liu, Q. M. et al. Photoinduced multistage phase transitions in Ta(2)NiSe(5). Nat. Commun. 12, 2050 (2021).
pubmed: 33824351 pmcid: 8024274 doi: 10.1038/s41467-021-22345-3
Bonhommeau, S. et al. One shot laser pulse induced reversible spin transition in the spin-crossover complex [Fe(C
pubmed: 15892094 doi: 10.1002/anie.200500717
Teitelbaum, S. W. et al. Real-time observation of a coherent lattice transformation into a high-symmetry phase. Phys. Rev. X 8, 031081 (2018).
Gao, M. et al. Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature 496, 343–346 (2013).
pubmed: 23598343 doi: 10.1038/nature12044
Collet, E. et al. Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science 300, 612–615 (2003).
pubmed: 12714737 doi: 10.1126/science.1082001
Ishikawa, T. et al. Large and ultrafast photoinduced reflectivity change in the charge separated phase of Et
doi: 10.1103/PhysRevB.80.115108
Halcrow, M. A. Spin-crossover Materials: Properties and Applications (John Wiley & Sons, Ltd, 2013).
Collet, E. et al. Aperiodic spin state ordering of bistable molecules and its photoinduced erasing. Phys. Rev. Lett. 109, 257206 (2012).
pubmed: 23368495 doi: 10.1103/PhysRevLett.109.257206
Ridier, K. et al. Finite size effects on the switching dynamics of spin-crossover thin films photoexcited by a femtosecond laser pulse. Adv. Mater. 31, 1901361 (2019).
doi: 10.1002/adma.201901361
Hoffmann, A., Reznik, D. & Schuller, I. K. Persistent photoinduced effects in high-T
doi: 10.1002/adma.19970090321
Schaniel, D. et al. Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media. Adv. Mater. 19, 723–726 (2007).
doi: 10.1002/adma.200601378
Xue, J. et al. Photon-induced reversible phase transition in CsPbBr
doi: 10.1002/adfm.201807922
Verdaguer, M. et al. Molecules to build solids: high TC molecule-based magnets by design and recent revival of cyano complexes chemistry. Coord. Chem. Rev. 190–192, 1023–1047 (1999).
doi: 10.1016/S0010-8545(99)00156-3
Liu, H. W. et al. Reversible valence tautomerism induced by a single-shot laser pulse in a cobalt–iron Prussian blue analog. Phys. Rev. Lett. 90, 167403 (2003).
pubmed: 12732007 doi: 10.1103/PhysRevLett.90.167403
Tokoro, H. & Ohkoshi, S. Multifunctional material: bistable metal–cyanide polymer of rubidium manganese hexacyanoferrate. Bull. Chem. Soc. Jpn. 88, 227–239 (2015).
doi: 10.1246/bcsj.20140264
Zhang, K. et al. Charge-transfer phase transition of a cyanide-bridged Fe(II) /Fe(III) coordination polymer. Angew. Chem. Int. Ed. Engl. 55, 6047–6050 (2016).
pubmed: 27061860 doi: 10.1002/anie.201601526
Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. Photoinduced magnetization of a cobalt–iron cyanide. Science 272, 704–705 (1996).
pubmed: 8662564 doi: 10.1126/science.272.5262.704
Volatron, F. et al. Photo-induced magnetic bistability in a controlled assembly of anisotropic coordination nanoparticles. Chem. Commun. 47, 1985–1987, (2011).
doi: 10.1039/c0cc04940a
Dumont, M. F. et al. Photoinduced magnetism in core/shell Prussian blue analogue heterostructures of KjNik[Cr(CN)
pubmed: 21506586 doi: 10.1021/ic1022054
Ohkoshi, S. et al. 90-degree optical switching of output second-harmonic light in chiral photomagnet. Nat. Photonics 8, 65–71 (2014).
doi: 10.1038/nphoton.2013.310
Ohkoshi, S., Imoto, K., Tsunobuchi, Y., Takano, S. & Tokoro, H. Light-induced spin-crossover magnet. Nat. Chem. 3, 564–569 (2011).
pubmed: 21697879 doi: 10.1038/nchem.1067
Tokoro, H. et al. Visible-light-induced reversible photomagnetism in rubidium manganese hexacyanoferrate. Chem. Mater. 20, 423–428 (2008).
doi: 10.1021/cm701873s
Aguila, D., Prado, Y., Koumousi, E. S., Mathoniere, C. & Clerac, R. Switchable Fe/Co Prussian blue networks and molecular analogues. Chem. Soc. Rev. 45, 203–224 (2016).
pubmed: 26553752 doi: 10.1039/C5CS00321K
Cammarata, M. et al. Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue. Nat. Chem. 13, 10–14 (2021).
pubmed: 33288895 doi: 10.1038/s41557-020-00597-8
Azzolina, G. et al. Out-of-equilibrium lattice response to photo-induced charge-transfer in a MnFe Prussian blue analogue. J. Mater. Chem. C 9, 6773–6780 (2021).
doi: 10.1039/D1TC01487K
Azzolina, G. et al. Exploring ultrafast photoswitching pathways in RbMnFe Prussian Blue analogue. Angew. Chem. Int. Ed. 60, 23267–23273 (2021).
doi: 10.1002/anie.202106959
Barlow, K. & Johansson, J. O. Ultrafast photoinduced dynamics in Prussian blue analogues. Phys. Chem. Chem. Phys. 23, 8118–8131 (2021).
pubmed: 33875986 doi: 10.1039/D1CP00535A
Johansson, J. O. et al. Directly probing spin dynamics in a molecular magnet with femtosecond time-resolution. Chem. Sci. 7, 7061–7067 (2016).
pubmed: 28451141 pmcid: 5355827 doi: 10.1039/C6SC01105E
Ohkoshi, S. & Tokoro, H. Photomagnetism in cyano-bridged bimetal assemblies. Acc. Chem. Res. 45, 1749–1758 (2012).
pubmed: 22869535 doi: 10.1021/ar300068k
Azzolina, G. et al. Landau theory for non-symmetry-breaking electronic instability coupled to symmetry-breaking order parameter applied to Prussian blue analog. Phys. Rev. B 102, 134104 (2020).
doi: 10.1103/PhysRevB.102.134104
Arnett, D. C., Voehringer, P. & Scherer, N. F. Excitation dephasing, product formation, and vibrational coherence in an intervalence charge-transfer reaction. J. Am. Chem. Soc. 117, 12262–12272 (1995).
doi: 10.1021/ja00154a028
Weidinger, D., Brown, D. J. & Owrutsky, J. C. Transient absorption studies of vibrational relaxation and photophysics of Prussian blue and ruthenium purple nanoparticles. J. Chem. Phys. 134, 124510 (2011).
pubmed: 21456679 doi: 10.1063/1.3564918
Moritomo, Y. et al. Photoinduced phase transition into a hidden phase in cobalt hexacyanoferrate as investigated by time-resolved X-ray absorption fine structure. J. Phys. Soc. Jpn. 82, 033601 (2013).
doi: 10.7566/JPSJ.82.033601
Zerdane, S. et al. Out-of-equilibrium dynamics driven by photoinduced charge transfer in CsCoFe Prussian blue analogue nanocrystals. Faraday Discuss. 237, 224–236 (2022).
pubmed: 35678517 doi: 10.1039/D2FD00015F
Asahara, A. et al. Ultrafast dynamics of reversible photoinduced phase transitions in rubidium manganese hexacyanoferrate investigated by midinfrared CN vibration spectroscopy. Phys. Rev. B 86, 195138 (2012).
Johnson, S. L. et al. Non-equilibrium phonon dynamics studied by grazing-incidence femtosecond X-ray crystallography. Acta Crystallogr. Sect. A 66, 157–167 (2010).
doi: 10.1107/S0108767309053859
Beaud, P. et al. A time-dependent order parameter for ultrafast photoinduced phase transitions. Nat. Mater. 13, 923–927 (2014).
pubmed: 25087068 doi: 10.1038/nmat4046
Chergui, M. & Collet, E. Photoinduced structural dynamics of molecular systems mapped by time-resolved X-ray methods. Chem. Rev. 117, 11025–11065 (2017).
pubmed: 28692268 doi: 10.1021/acs.chemrev.6b00831
Ichikawa, H. et al. Transient photoinduced ‘hidden’ phase in a manganite. Nat. Mater. 10, 101–105 (2011).
pubmed: 21240287 doi: 10.1038/nmat2929
Elsaesser, T. & Woerner, M. Perspective: structural dynamics in condensed matter mapped by femtosecond x-ray diffraction. J. Chem. Phys. 140, 020901 (2014).
pubmed: 24437858 doi: 10.1063/1.4855115
Yun, J.-H. et al. Early-stage dynamics of chloride ion–pumping rhodopsin revealed by a femtosecond X-ray laser. Proc. Natl Acad. Sci. USA 118, e2020486118 (2021).
pubmed: 33753488 pmcid: 8020794 doi: 10.1073/pnas.2020486118
Coquelle, N. et al. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat. Chem. 10, 31–37 (2018).
pubmed: 29256511 doi: 10.1038/nchem.2853
Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).
pubmed: 27151871 pmcid: 5291079 doi: 10.1126/science.aad5081
Stockler, L. J. et al. Towards pump-probe single-crystal XFEL refinements for small-unit-cell systems. IUCRJ 10, 103–117 (2023).
pubmed: 36598506 pmcid: 9812214 doi: 10.1107/S2052252522011782
Cammarata, M. et al. Chopper system for time resolved experiments with synchrotron radiation. Rev. Sci. Instrum. 80, 015101 (2009).
pubmed: 19191457 doi: 10.1063/1.3036983
Ohkoshi, S., Nuida, T., Matsuda, T., Tokoro, H. & Hashimoto, K. The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry. J. Mater. Chem. 15, 3291 (2005).
doi: 10.1039/b504062k
Tokoro, H., Nakagawa, K., Imoto, K., Hakoe, F. & Ohkoshi, S. Zero thermal expansion fluid and oriented film based on a bistable metal-cyanide polymer. Chem. Mater. 24, 1324–1330 (2012).
doi: 10.1021/cm203762k
Boukheddaden, K. et al. Experimental access to elastic and thermodynamic properties of RbMnFe(CN)6. J. Appl. Phys. 109, 013520 (2011).
doi: 10.1063/1.3528239
Bertoni, R. et al. Elastically driven cooperative response of a molecular material impacted by a laser pulse. Nat. Mater. 15, 606–610 (2016).
pubmed: 27019383 doi: 10.1038/nmat4606
Bertoni, R. et al. Temperature dependence of the cooperative out-of-equilibrium elastic switching in a spin-crossover material. Phys. Chem. Chem. Phys. 21, 6606–6612 (2019).
pubmed: 30854539 doi: 10.1039/C8CP07074A
Enachescu, C. et al. Theoretical approach for elastically driven cooperative switching of spin-crossover compounds impacted by an ultrashort laser pulse. Phys. Rev. B 95, 224107 (2017).
doi: 10.1103/PhysRevB.95.224107
Collet, E., Azzolina, G., Jeftić, J. & Lemée-Cailleau, M.-H. Coupled spin cross-over and ferroelasticity: revisiting the prototype [Fe(ptz)
Collet, E. & Azzolina, G. Coupling and decoupling of spin crossover and ferroelastic distortion: unsymmetric hysteresis loop, phase diagram, and sequence of phases. Phys. Rev. Mater. 5, 044401 (2021).
doi: 10.1103/PhysRevMaterials.5.044401
Salje, E. K. & Carpenter, M. A. Linear-quadratic order parameter coupling and multiferroic phase transitions. J. Phys. Condens. Matter 23, 462202 (2011).
pubmed: 22056651 doi: 10.1088/0953-8984/23/46/462202
Carpenter, M. A., Salje, E. K. H. & Graeme-Barber, A. Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. Eur. J. Mineral. 10, 621–691 (1998).
doi: 10.1127/ejm/10/4/0621
Carpenter, M. A. & Salje, E. K. Elastic anomalies in minerals due to structural phase transitions. Eur. J. Mineral. 10, 693 (1998).
doi: 10.1127/ejm/10/4/0693
Salje, E. K. Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge University Press, 1991).
Chernyshov, D., Bürgi, H.-B., Hostettler, M. & Törnroos, K. W. Landau theory for spin transition and ordering phenomena in Fe(II) compounds. Phys. Rev. B 70, 094116 (2004).
doi: 10.1103/PhysRevB.70.094116
Azzolina, G. et al. Single laser shot photoinduced phase transition of rubidium manganese hexacyanoferrate investigated by X-ray diffraction. Eur. J. Inorg. Chem. 2019, 3142–3147 (2019).
doi: 10.1002/ejic.201801478
Ashiotis, G. et al. The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).
pubmed: 25844080 pmcid: 4379438 doi: 10.1107/S1600576715004306
Coelho, A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210–218 (2018).
doi: 10.1107/S1600576718000183
Herve, M. et al. Raw Data and Codes for the Article “Ultrafast and persistent photoinduced phase transition at room temperature monitored by streaming powder diffraction” [Data set]. Zenedo https://doi.org/10.5281/zenodo.10227842 (2023).

Auteurs

Marius Hervé (M)

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France.
CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.

Gaël Privault (G)

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France.
CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.

Elzbieta Trzop (E)

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France.
CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.

Shintaro Akagi (S)

Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.

Yves Watier (Y)

ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France.

Serhane Zerdane (S)

SwissFEL, Paul Scherrer Institut, Villigen, PSI, Switzerland.

Ievgeniia Chaban (I)

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France.
CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.

Ricardo G Torres Ramírez (RG)

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France.
CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.

Celine Mariette (C)

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France.
ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France.

Alix Volte (A)

ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France.

Marco Cammarata (M)

ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France.

Matteo Levantino (M)

ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France.

Hiroko Tokoro (H)

CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan. tokoro@ims.tsukuba.ac.jp.
Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. tokoro@ims.tsukuba.ac.jp.

Shin-Ichi Ohkoshi (SI)

CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan. ohkoshi@chem.s.u-tokyo.ac.jp.
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. ohkoshi@chem.s.u-tokyo.ac.jp.

Eric Collet (E)

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France. eric.collet@univ-rennes.fr.
CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan. eric.collet@univ-rennes.fr.
Institut universitaire de France (IUF), Paris, France. eric.collet@univ-rennes.fr.

Classifications MeSH