Challenges and perspectives for naming lipids in the context of lipidomics.

Anotation Identification Interoperability Lipidomic

Journal

Metabolomics : Official journal of the Metabolomic Society
ISSN: 1573-3890
Titre abrégé: Metabolomics
Pays: United States
ID NLM: 101274889

Informations de publication

Date de publication:
24 Jan 2024
Historique:
received: 04 08 2023
accepted: 01 12 2023
medline: 25 1 2024
pubmed: 25 1 2024
entrez: 24 1 2024
Statut: epublish

Résumé

Lipids are key compounds in the study of metabolism and are increasingly studied in biology projects. It is a very broad family that encompasses many compounds, and the name of the same compound may vary depending on the community where they are studied. In addition, their structures are varied and complex, which complicates their analysis. Indeed, the structural resolution does not always allow a complete level of annotation so the actual compound analysed will vary from study to study and should be clearly stated. For all these reasons the identification and naming of lipids is complicated and very variable from one study to another, it needs to be harmonized. In this position paper we will present and discuss the different way to name lipids (with chemoinformatic and semantic identifiers) and their importance to share lipidomic results. Homogenising this identification and adopting the same rules is essential to be able to share data within the community and to map data on functional networks.

Identifiants

pubmed: 38267595
doi: 10.1007/s11306-023-02075-x
pii: 10.1007/s11306-023-02075-x
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

15

Subventions

Organisme : COST EPILIPIDNET
ID : CA19105
Organisme : LipidMAPS
ID : LipidMAPS consortium
Organisme : MetaboHUB
ID : MetaboHUB-ANR-11-INBS-0010

Informations de copyright

© 2024. The Author(s).

Références

Aimo, L., Liechti, R., Hyka-Nouspikel, N., Niknejad, A., Gleizes, A., Götz, L., et al. (2015). The SwissLipids knowledgebase for lipid biology. Bioinformatics (Oxford, England), 31(17), 2860–2866.
pubmed: 25943471
Baba, T., Campbell, J. L., Le Blanc, J. C. Y., Baker, P. R. S., Hager, J. W., & Thomson, B. A. (2017). Development of a branched radio-frequency ion trap for electron based dissociation and related applications. Mass Spectrometry, 6, A0058–A0058. https://doi.org/10.5702/massspectrometry.A0058
doi: 10.5702/massspectrometry.A0058 pubmed: 28630811 pmcid: 5469727
Bansal, P., Morgat, A., Axelsen, K. B., Muthukrishnan, V., Coudert, E., Aimo, L., et al. (2022). Rhea, the reaction knowledgebase in 2022. Nucleic Acids Research, 50(D1), D693-700.
doi: 10.1093/nar/gkab1016 pubmed: 34755880
Brown, S. H. J., Mitchell, T. W., & Blanksby, S. J. (2011). Analysis of unsaturated lipids by ozone-induced dissociation. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811, 807–817. https://doi.org/10.1016/j.bbalip.2011.04.015
doi: 10.1016/j.bbalip.2011.04.015 pubmed: 21571093
Chambers, J., Davies, M., Gaulton, A., Hersey, A., Velankar, S., Petryszak, R., et al. (2013). UniChem: A unified chemical structure cross-referencing and identifier tracking system. Journal of Cheminformatics, 5(1), 3.
doi: 10.1186/1758-2946-5-3 pubmed: 23317286 pmcid: 3616875
Coudert, E., Gehant, S., de Castro, E., Pozzato, M., Baratin, D., Neto, T., et al. (2023). Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics, 39, btac793. https://doi.org/10.1093/bioinformatics/btac793
doi: 10.1093/bioinformatics/btac793 pubmed: 36484697
de Matos, P., Alcántara, R., Dekker, A., Ennis, M., Hastings, J., Haug, K., et al. (2010). Chemical entities of biological interest: An update. Nucleic Acids Research, 38(suppl_1), D249–D254.
doi: 10.1093/nar/gkp886 pubmed: 19854951
Degtyarenko, K., de Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A., et al. (2007). ChEBI: A database and ontology for chemical entities of biological interest. Nucleic Acids Research, 36(Database), D344–D350.
doi: 10.1093/nar/gkm791 pubmed: 17932057 pmcid: 2238832
Dhaked, D. K., Ihlenfeldt, W. D., Patel, H., Delannée, V., & Nicklaus, M. C. (2020). Toward a comprehensive treatment of tautomerism in chemoinformatics including in InChI V2. Journal of Chemical Information and Modeling, 60(3), 1253–1275.
doi: 10.1021/acs.jcim.9b01080 pubmed: 32043883 pmcid: 8459712
Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu, T., et al. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 50, S9–S14. https://doi.org/10.1194/jlr.R800095-JLR200
doi: 10.1194/jlr.R800095-JLR200 pubmed: 19098281 pmcid: 2674711
Faulon, J.-L., & Bender, A. (2010). Handbook of Chemoinformatics Algorithms, 0 ed. Chapman and Hall/CRC. https://doi.org/10.1201/9781420082999
Gaud, C., Sousa, B. C., Nguyen, A., Fedorova, M., Ni, Z., O’Donnell, V. B., et al. (2021). BioPAN: A web-based tool to explore mammalian lipidome metabolic pathways on LIPID MAPS. F1000Research, 10, 4. https://doi.org/10.12688/f1000research.28022.2
doi: 10.12688/f1000research.28022.2 pubmed: 33564392 pmcid: 7848852
Hastings, J., Owen, G., Dekker, A., Ennis, M., Kale, N., Muthukrishnan, V., et al. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Research, 44(D1), D1214-1219.
doi: 10.1093/nar/gkv1031 pubmed: 26467479
Heller, S. R., McNaught, A., Pletnev, I., Stein, S., & Tchekhovskoi, D. (2015). InChI, the IUPAC International Chemical Identifier. Journal of Cheminformatics, 7(1), 23.
doi: 10.1186/s13321-015-0068-4 pubmed: 26136848 pmcid: 4486400
Hill, D. P., Adams, N., Bada, M., Batchelor, C., Berardini, T. Z., Dietze, H., et al. (2013). Dovetailing biology and chemistry: Integrating the Gene Ontology with the ChEBI chemical ontology. BMC Genomics, 14(1), 513.
doi: 10.1186/1471-2164-14-513 pubmed: 23895341 pmcid: 3733925
Koelmel, J. P., Ulmer, C. Z., Jones, C. M., Yost, R. A., & Bowden, J. A. (2017). Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochimica Et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1862(8), 766–770.
doi: 10.1016/j.bbalip.2017.02.016 pubmed: 28263877
Köfeler, H. C., Ahrends, R., Baker, E. S., Ekroos, K., Han, X., Hoffmann, N., et al. (2021). Recommendations for good practice in MS-based lipidomics. Journal of Lipid Research, 62, 100138. https://doi.org/10.1016/j.jlr.2021.100138
doi: 10.1016/j.jlr.2021.100138 pubmed: 34662536 pmcid: 8585648
Köhler, N., Rose, T. D., Falk, L., & Pauling, J. K. (2021). Investigating global lipidome alterations with the lipid network explorer. Metabolites, 11(8), 488.
doi: 10.3390/metabo11080488 pubmed: 34436429 pmcid: 8398636
Koistinen, V., Kärkkäinen, O., Keski-Rahkonen, P., Tsugawa, H., Scalbert, A., Arita, M., et al. (2023). Towards a Rosetta stone for metabolomics: Recommendations to overcome inconsistent metabolite nomenclature. Nature Metabolism, 5, 351–354. https://doi.org/10.1038/s42255-023-00757-3
doi: 10.1038/s42255-023-00757-3 pubmed: 36890347
Kopczynski, D., Hoffmann, N., Peng, B., Liebisch, G., Spener, F., & Ahrends, R. (2022). Goslin 2.0 implements the recent lipid shorthand nomenclature for MS-derived lipid structures. Analytical Chemistry, 94(16), 6097–6101.
doi: 10.1021/acs.analchem.1c05430 pubmed: 35404045 pmcid: 9047418
Liebisch, G., Fahy, E., Aoki, J., Dennis, E. A., Durand, T., Ejsing, C. S., et al. (2020). Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. Journal of Lipid Research, 61(12), 1539–1555.
doi: 10.1194/jlr.S120001025 pubmed: 33037133 pmcid: 7707175
Liebisch, G., Vizcaíno, J. A., Köfeler, H., Trötzmüller, M., Griffiths, W. J., Schmitz, G., et al. (2013). Shorthand notation for lipid structures derived from mass spectrometry. Journal of Lipid Research, 54(6), 1523–1530.
doi: 10.1194/jlr.M033506 pubmed: 23549332 pmcid: 3646453
McDonald, J. G., Ejsing, C. S., Kopczynski, D., Holčapek, M., Aoki, J., Arita, M., et al. (2022). Introducing the lipidomics minimal reporting checklist. Nature Metabolism, 4(9), 1086–1088.
doi: 10.1038/s42255-022-00628-3 pubmed: 35934691
Morgat, A., Lombardot, T., Coudert, E., Axelsen, K., Neto, T. B., Gehant, S., et al. (2020). Enzyme annotation in UniProtKB using Rhea. Bioinformatics, 36, 1896–1901. https://doi.org/10.1093/bioinformatics/btz817
doi: 10.1093/bioinformatics/btz817
Ni, Z., & Fedorova, M. (2020). LipidLynxX: A data transfer hub to support integration of large scale lipidomics datasets (preprint). Bioinformatics. https://doi.org/10.1101/2020.04.09.033894
doi: 10.1101/2020.04.09.033894 pubmed: 32176258 pmcid: 7029547
Poupin, N., Vinson, F., Moreau, A., Batut, A., Chazalviel, M., Colsch, B., et al. (2020). Improving lipid mapping in genome scale metabolic networks using ontologies. Metabolomics, 16(4), 44.
doi: 10.1007/s11306-020-01663-5 pubmed: 32215752 pmcid: 7096385
Sud, M., Fahy, E., Cotter, D., Brown, A., Dennis, E. A., Glass, C. K., et al. (2007). LMSD: LIPID MAPS structure database. Nucleic Acids Research, 35, D527–D532.
doi: 10.1093/nar/gkl838 pubmed: 17098933
UniProt Consortium. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489.
doi: 10.1093/nar/gkaa1100
Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., et al. (2022). HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Research, 50, D622–D631. https://doi.org/10.1093/nar/gkab1062
Witting, M. (2020). Suggestions for standardized identifiers for fatty acyl compounds in genome scale metabolic models and their application to the WormJam Caenorhabditis elegans model. Metabolites, 10(4), 130.
doi: 10.3390/metabo10040130 pubmed: 32231124 pmcid: 7241080

Auteurs

Michael Witting (M)

Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising-Weihenstephan, Germany.

Adnan Malik (A)

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.

Andrew Leach (A)

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.

Alan Bridge (A)

SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211, Geneva 4, Switzerland.

Lucila Aimo (L)

SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211, Geneva 4, Switzerland.

Matthew J Conroy (MJ)

Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.

Valerie B O'Donnell (VB)

Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.

Nils Hoffmann (N)

Institute for Bio- and Geosciences (IBG-5), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.

Dominik Kopczynski (D)

Institute for Analytical Chemistry, Universität Wien, Währingerstrasse 38, 1090, Vienna, Austria.

Franck Giacomoni (F)

Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France.
MetaboHUB, National Infrastructure of Metabolomics and Fluxomics ANR-11-INBS-0010, 31077, Toulouse, France.

Nils Paulhe (N)

Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France.
MetaboHUB, National Infrastructure of Metabolomics and Fluxomics ANR-11-INBS-0010, 31077, Toulouse, France.

Amaury Cazenave Gassiot (AC)

Singapore Lipidomics Incubator, Life Sciences Institute, and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Nathalie Poupin (N)

UMR1331 Toxalim, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.

Fabien Jourdan (F)

MetaboHUB, National Infrastructure of Metabolomics and Fluxomics ANR-11-INBS-0010, 31077, Toulouse, France.
UMR1331 Toxalim, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.

Justine Bertrand-Michel (J)

MetaboHUB, National Infrastructure of Metabolomics and Fluxomics ANR-11-INBS-0010, 31077, Toulouse, France. Justine.bertrand-michel@inserm.fr.
I2MC, Inserm U1297, Université de Toulouse, Toulouse, France. Justine.bertrand-michel@inserm.fr.

Classifications MeSH