Challenges and perspectives for naming lipids in the context of lipidomics.
Anotation
Identification
Interoperability
Lipidomic
Journal
Metabolomics : Official journal of the Metabolomic Society
ISSN: 1573-3890
Titre abrégé: Metabolomics
Pays: United States
ID NLM: 101274889
Informations de publication
Date de publication:
24 Jan 2024
24 Jan 2024
Historique:
received:
04
08
2023
accepted:
01
12
2023
medline:
25
1
2024
pubmed:
25
1
2024
entrez:
24
1
2024
Statut:
epublish
Résumé
Lipids are key compounds in the study of metabolism and are increasingly studied in biology projects. It is a very broad family that encompasses many compounds, and the name of the same compound may vary depending on the community where they are studied. In addition, their structures are varied and complex, which complicates their analysis. Indeed, the structural resolution does not always allow a complete level of annotation so the actual compound analysed will vary from study to study and should be clearly stated. For all these reasons the identification and naming of lipids is complicated and very variable from one study to another, it needs to be harmonized. In this position paper we will present and discuss the different way to name lipids (with chemoinformatic and semantic identifiers) and their importance to share lipidomic results. Homogenising this identification and adopting the same rules is essential to be able to share data within the community and to map data on functional networks.
Identifiants
pubmed: 38267595
doi: 10.1007/s11306-023-02075-x
pii: 10.1007/s11306-023-02075-x
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
15Subventions
Organisme : COST EPILIPIDNET
ID : CA19105
Organisme : LipidMAPS
ID : LipidMAPS consortium
Organisme : MetaboHUB
ID : MetaboHUB-ANR-11-INBS-0010
Informations de copyright
© 2024. The Author(s).
Références
Aimo, L., Liechti, R., Hyka-Nouspikel, N., Niknejad, A., Gleizes, A., Götz, L., et al. (2015). The SwissLipids knowledgebase for lipid biology. Bioinformatics (Oxford, England), 31(17), 2860–2866.
pubmed: 25943471
Baba, T., Campbell, J. L., Le Blanc, J. C. Y., Baker, P. R. S., Hager, J. W., & Thomson, B. A. (2017). Development of a branched radio-frequency ion trap for electron based dissociation and related applications. Mass Spectrometry, 6, A0058–A0058. https://doi.org/10.5702/massspectrometry.A0058
doi: 10.5702/massspectrometry.A0058
pubmed: 28630811
pmcid: 5469727
Bansal, P., Morgat, A., Axelsen, K. B., Muthukrishnan, V., Coudert, E., Aimo, L., et al. (2022). Rhea, the reaction knowledgebase in 2022. Nucleic Acids Research, 50(D1), D693-700.
doi: 10.1093/nar/gkab1016
pubmed: 34755880
Brown, S. H. J., Mitchell, T. W., & Blanksby, S. J. (2011). Analysis of unsaturated lipids by ozone-induced dissociation. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811, 807–817. https://doi.org/10.1016/j.bbalip.2011.04.015
doi: 10.1016/j.bbalip.2011.04.015
pubmed: 21571093
Chambers, J., Davies, M., Gaulton, A., Hersey, A., Velankar, S., Petryszak, R., et al. (2013). UniChem: A unified chemical structure cross-referencing and identifier tracking system. Journal of Cheminformatics, 5(1), 3.
doi: 10.1186/1758-2946-5-3
pubmed: 23317286
pmcid: 3616875
Coudert, E., Gehant, S., de Castro, E., Pozzato, M., Baratin, D., Neto, T., et al. (2023). Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics, 39, btac793. https://doi.org/10.1093/bioinformatics/btac793
doi: 10.1093/bioinformatics/btac793
pubmed: 36484697
de Matos, P., Alcántara, R., Dekker, A., Ennis, M., Hastings, J., Haug, K., et al. (2010). Chemical entities of biological interest: An update. Nucleic Acids Research, 38(suppl_1), D249–D254.
doi: 10.1093/nar/gkp886
pubmed: 19854951
Degtyarenko, K., de Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A., et al. (2007). ChEBI: A database and ontology for chemical entities of biological interest. Nucleic Acids Research, 36(Database), D344–D350.
doi: 10.1093/nar/gkm791
pubmed: 17932057
pmcid: 2238832
Dhaked, D. K., Ihlenfeldt, W. D., Patel, H., Delannée, V., & Nicklaus, M. C. (2020). Toward a comprehensive treatment of tautomerism in chemoinformatics including in InChI V2. Journal of Chemical Information and Modeling, 60(3), 1253–1275.
doi: 10.1021/acs.jcim.9b01080
pubmed: 32043883
pmcid: 8459712
Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu, T., et al. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 50, S9–S14. https://doi.org/10.1194/jlr.R800095-JLR200
doi: 10.1194/jlr.R800095-JLR200
pubmed: 19098281
pmcid: 2674711
Faulon, J.-L., & Bender, A. (2010). Handbook of Chemoinformatics Algorithms, 0 ed. Chapman and Hall/CRC. https://doi.org/10.1201/9781420082999
Gaud, C., Sousa, B. C., Nguyen, A., Fedorova, M., Ni, Z., O’Donnell, V. B., et al. (2021). BioPAN: A web-based tool to explore mammalian lipidome metabolic pathways on LIPID MAPS. F1000Research, 10, 4. https://doi.org/10.12688/f1000research.28022.2
doi: 10.12688/f1000research.28022.2
pubmed: 33564392
pmcid: 7848852
Hastings, J., Owen, G., Dekker, A., Ennis, M., Kale, N., Muthukrishnan, V., et al. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Research, 44(D1), D1214-1219.
doi: 10.1093/nar/gkv1031
pubmed: 26467479
Heller, S. R., McNaught, A., Pletnev, I., Stein, S., & Tchekhovskoi, D. (2015). InChI, the IUPAC International Chemical Identifier. Journal of Cheminformatics, 7(1), 23.
doi: 10.1186/s13321-015-0068-4
pubmed: 26136848
pmcid: 4486400
Hill, D. P., Adams, N., Bada, M., Batchelor, C., Berardini, T. Z., Dietze, H., et al. (2013). Dovetailing biology and chemistry: Integrating the Gene Ontology with the ChEBI chemical ontology. BMC Genomics, 14(1), 513.
doi: 10.1186/1471-2164-14-513
pubmed: 23895341
pmcid: 3733925
Koelmel, J. P., Ulmer, C. Z., Jones, C. M., Yost, R. A., & Bowden, J. A. (2017). Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochimica Et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1862(8), 766–770.
doi: 10.1016/j.bbalip.2017.02.016
pubmed: 28263877
Köfeler, H. C., Ahrends, R., Baker, E. S., Ekroos, K., Han, X., Hoffmann, N., et al. (2021). Recommendations for good practice in MS-based lipidomics. Journal of Lipid Research, 62, 100138. https://doi.org/10.1016/j.jlr.2021.100138
doi: 10.1016/j.jlr.2021.100138
pubmed: 34662536
pmcid: 8585648
Köhler, N., Rose, T. D., Falk, L., & Pauling, J. K. (2021). Investigating global lipidome alterations with the lipid network explorer. Metabolites, 11(8), 488.
doi: 10.3390/metabo11080488
pubmed: 34436429
pmcid: 8398636
Koistinen, V., Kärkkäinen, O., Keski-Rahkonen, P., Tsugawa, H., Scalbert, A., Arita, M., et al. (2023). Towards a Rosetta stone for metabolomics: Recommendations to overcome inconsistent metabolite nomenclature. Nature Metabolism, 5, 351–354. https://doi.org/10.1038/s42255-023-00757-3
doi: 10.1038/s42255-023-00757-3
pubmed: 36890347
Kopczynski, D., Hoffmann, N., Peng, B., Liebisch, G., Spener, F., & Ahrends, R. (2022). Goslin 2.0 implements the recent lipid shorthand nomenclature for MS-derived lipid structures. Analytical Chemistry, 94(16), 6097–6101.
doi: 10.1021/acs.analchem.1c05430
pubmed: 35404045
pmcid: 9047418
Liebisch, G., Fahy, E., Aoki, J., Dennis, E. A., Durand, T., Ejsing, C. S., et al. (2020). Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. Journal of Lipid Research, 61(12), 1539–1555.
doi: 10.1194/jlr.S120001025
pubmed: 33037133
pmcid: 7707175
Liebisch, G., Vizcaíno, J. A., Köfeler, H., Trötzmüller, M., Griffiths, W. J., Schmitz, G., et al. (2013). Shorthand notation for lipid structures derived from mass spectrometry. Journal of Lipid Research, 54(6), 1523–1530.
doi: 10.1194/jlr.M033506
pubmed: 23549332
pmcid: 3646453
McDonald, J. G., Ejsing, C. S., Kopczynski, D., Holčapek, M., Aoki, J., Arita, M., et al. (2022). Introducing the lipidomics minimal reporting checklist. Nature Metabolism, 4(9), 1086–1088.
doi: 10.1038/s42255-022-00628-3
pubmed: 35934691
Morgat, A., Lombardot, T., Coudert, E., Axelsen, K., Neto, T. B., Gehant, S., et al. (2020). Enzyme annotation in UniProtKB using Rhea. Bioinformatics, 36, 1896–1901. https://doi.org/10.1093/bioinformatics/btz817
doi: 10.1093/bioinformatics/btz817
Ni, Z., & Fedorova, M. (2020). LipidLynxX: A data transfer hub to support integration of large scale lipidomics datasets (preprint). Bioinformatics. https://doi.org/10.1101/2020.04.09.033894
doi: 10.1101/2020.04.09.033894
pubmed: 32176258
pmcid: 7029547
Poupin, N., Vinson, F., Moreau, A., Batut, A., Chazalviel, M., Colsch, B., et al. (2020). Improving lipid mapping in genome scale metabolic networks using ontologies. Metabolomics, 16(4), 44.
doi: 10.1007/s11306-020-01663-5
pubmed: 32215752
pmcid: 7096385
Sud, M., Fahy, E., Cotter, D., Brown, A., Dennis, E. A., Glass, C. K., et al. (2007). LMSD: LIPID MAPS structure database. Nucleic Acids Research, 35, D527–D532.
doi: 10.1093/nar/gkl838
pubmed: 17098933
UniProt Consortium. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489.
doi: 10.1093/nar/gkaa1100
Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., et al. (2022). HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Research, 50, D622–D631. https://doi.org/10.1093/nar/gkab1062
Witting, M. (2020). Suggestions for standardized identifiers for fatty acyl compounds in genome scale metabolic models and their application to the WormJam Caenorhabditis elegans model. Metabolites, 10(4), 130.
doi: 10.3390/metabo10040130
pubmed: 32231124
pmcid: 7241080