Aqueous amine enables sustainable monosaccharide, monophenol, and pyridine base coproduction in lignocellulosic biorefineries.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
25 Jan 2024
Historique:
received: 18 07 2023
accepted: 10 01 2024
medline: 26 1 2024
pubmed: 26 1 2024
entrez: 25 1 2024
Statut: epublish

Résumé

Thought-out utilization of entire lignocellulose is of great importance to achieving sustainable and cost-effective biorefineries. However, there is a trade-off between efficient carbohydrate utilization and lignin-to-chemical conversion yield. Here, we fractionate corn stover into a carbohydrate fraction with high enzymatic digestibility and reactive lignin with satisfactory catalytic depolymerization activity using a mild high-solid process with aqueous diethylamine (DEA). During the fractionation, in situ amination of lignin achieves extensive delignification, effective lignin stabilization, and dramatically reduced nonproductive adsorption of cellulase on the substrate. Furthermore, by designing a tandem fractionation-hydrogenolysis strategy, the dissolved lignin is depolymerized and aminated simultaneously to co-produce monophenolics and pyridine bases. The process represents the viable scheme of transforming real lignin into pyridine bases in high yield, resulting from the reactions between cleaved lignin side chains and amines. This work opens a promising approach to the efficient valorization of lignocellulose.

Identifiants

pubmed: 38272912
doi: 10.1038/s41467-024-45073-w
pii: 10.1038/s41467-024-45073-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

734

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 21978106, U21A20309

Informations de copyright

© 2024. The Author(s).

Références

Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).
pubmed: 29318245 doi: 10.1039/C7CS00566K
Beig, B. et al. Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: a review. Fuel 287, 119670 (2021).
doi: 10.1016/j.fuel.2020.119670
Liu, Z. H. et al. Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization. Nat. Commun. 12, 3912 (2021).
pubmed: 34162838 pmcid: 8222318 doi: 10.1038/s41467-021-23920-4
Xu, H., Li, B. & Mu, X. Review of alkali-based pretreatment to enhance enzymatic saccharification for lignocellulosic biomass conversion. Ind. Eng. Chem. Res. 55, 8691–8705 (2016).
doi: 10.1021/acs.iecr.6b01907
Li, C., Zhao, X., Wang, A., Huber, G. W. & Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115, 11559–11624 (2015).
pubmed: 26479313 doi: 10.1021/acs.chemrev.5b00155
Renders, T., Van den Bosch, S., Koelewijn, S. F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10, 1551–1557 (2017).
doi: 10.1039/C7EE01298E
Lynd, L. R. et al. Cellulosic ethanol: status and innovation. Curr. Opin. Biotechnol. 45, 202–211 (2017).
pubmed: 28528086 doi: 10.1016/j.copbio.2017.03.008
Gong, Z. & Shuai, L. Lignin condensation, an unsolved mystery. Trends Chem. 5, 163–166 (2023).
doi: 10.1016/j.trechm.2022.12.005
Xu, L., Zhang, S. J., Zhong, C., Li, B. Z. & Yuan, Y. J. Alkali-based pretreatment-facilitated lignin valorization: a review. Ind. Eng. Chem. Res. 59, 16923–16938 (2020).
doi: 10.1021/acs.iecr.0c01456
Abu-Omar, M. M. et al. Guidelines for performing lignin-first biorefining. Energy Environ. Sci. 14, 262–292 (2021).
doi: 10.1039/D0EE02870C
Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016).
pubmed: 27846566 doi: 10.1126/science.aaf7810
Deuss, P. J. et al. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J. Am. Chem. Soc. 137, 7456–7467 (2015).
pubmed: 26001165 doi: 10.1021/jacs.5b03693
Liu, Y. et al. Tunable and functional deep eutectic solvents for lignocellulose valorization. Nat. Commun. 12, 5424 (2021).
pubmed: 34521828 pmcid: 8440657 doi: 10.1038/s41467-021-25117-1
Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).
pubmed: 25363781 doi: 10.1038/nature13867
Ferrini, P. & Rinaldi, R. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions. Angew. Chem. Int. Ed. 53, 8634–8639 (2014).
doi: 10.1002/anie.201403747
Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).
doi: 10.1002/anie.201510351
Adler, A. et al. Lignin-first biorefining of Nordic poplar to produce cellulose fibers could displace cotton production on agricultural lands. Joule 6, 1845–1858 (2022).
doi: 10.1016/j.joule.2022.06.021
Lan, W., Amiri, M. T., Hunston, C. M. & Luterbacher, J. S. Protection group effects during α,γ-diol lignin stabilization promote high-selectivity monomer production. Angew. Chem. Int. Ed. 57, 1356–1360 (2018).
doi: 10.1002/anie.201710838
Ma, J., Le, D. & Yan, N. Single-step conversion of wood lignin into phenolic amines. Chem 9, 2869–2880 (2023).
Vincent Sahayaraj, D. et al. An effective strategy to produce highly amenable cellulose and enhance lignin upgrading to aromatic and olefinic hydrocarbons. Energy Environ. Sci. 16, 97–112 (2023).
doi: 10.1039/D2EE02304K
Zhang, C. et al. Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization. Chem. Rev. 123, 4510–4601 (2023).
pubmed: 37022360 doi: 10.1021/acs.chemrev.2c00664
Chen, X., Song, S., Li, H., Gözaydın, G. & Yan, N. Expanding the boundary of biorefinery: organonitrogen chemicals from biomass. Acc. Chem. Res. 54, 1711–1722 (2021).
pubmed: 33576600 doi: 10.1021/acs.accounts.0c00842
Higasio, Y. S. & Shoji, T. Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins. Appl. Catal. A 221, 197–207 (2001).
doi: 10.1016/S0926-860X(01)00815-8
Pohanish, R. P. Sittig’s Handbook of Pesticides and Agricultural Chemicals 2nd edn (Elsevier, 2014).
Pellis, A. et al. Enzymatic synthesis of lignin derivable pyridine based polyesters for the substitution of petroleum derived plastics. Nat. Commun. 10, 1762 (2019).
pubmed: 30992443 pmcid: 6467960 doi: 10.1038/s41467-019-09817-3
Zhang, B. et al. Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nat. Commun. 13, 3365 (2022).
pubmed: 35690613 pmcid: 9188570 doi: 10.1038/s41467-022-30815-5
Chen, Z. et al. Synthesis of indoles and carbazoles from a lignin model compound α-hydroxyacetophenone. Green Chem. 24, 2919–2926 (2022).
doi: 10.1039/D1GC04892A
Zhang, B. et al. Sustainable production of benzylamines from lignin. Angew. Chem. Int. Ed. 60, 20666–20671 (2021).
doi: 10.1002/anie.202105973
Zheng, B. et al. Production of alkoxyl-functionalized cyclohexylamines from lignin-derived guaiacols. Green Chem. 23, 8441–8447 (2021).
doi: 10.1039/D1GC02790E
Ding, Y. et al. Transition-metal-free synthesis of functionalized quinolines by direct conversion of β-O-4 model compounds. Angew. Chem. Int. Ed. 61, e202206284 (2022).
doi: 10.1002/anie.202206284
Liu, Y. et al. Successive cleavage and reconstruction of lignin β-O-4 models and polymer to access quinoxalines. ChemSusChem 15, e202201401 (2022).
pubmed: 36055966 doi: 10.1002/cssc.202201401
William, A., Henderson, J. & Schultz, C. J. The nucleophilicity of amines. J. Org. Chem. 27, 4643–4646 (1962).
doi: 10.1021/jo01059a507
Brotzel, F., Chu, Y. C. & Mayr, H. Nucleophilicities of primary and secondary amines in water. J. Org. Chem. 72, 3679–3688 (2007).
pubmed: 17411095 doi: 10.1021/jo062586z
Zhu, J. Y., Pan, X. & Zalesny, R. S. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl. Microbiol. Biotechnol. 87, 847–857 (2010).
pubmed: 20473606 doi: 10.1007/s00253-010-2654-8
Zhang, J., Wang, X., Chu, D., He, Y. & Bao, J. Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production. Bioresour. Technol. 102, 4480–4488 (2011).
pubmed: 21277774 doi: 10.1016/j.biortech.2011.01.005
Barakat, A., Chuetor, S., Monlau, F., Solhy, A. & Rouau, X. Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: impact on energy and yield of the enzymatic hydrolysis. Appl. Energy 113, 97–105 (2014).
doi: 10.1016/j.apenergy.2013.07.015
Wang, J., Qian, Y., Li, L. & Qiu, X. Atomic force microscopy and molecular dynamics simulations for study of lignin solution self-assembly mechanisms in organic–aqueous solvent mixtures. ChemSusChem 13, 4420–4427 (2020).
pubmed: 31951671 doi: 10.1002/cssc.201903132
Zhai, R., Hu, J. & Jin, M. Towards efficient enzymatic saccharification of pretreated lignocellulose: enzyme inhibition by lignin-derived phenolics and recent trends in mitigation strategies. Biotechnol. Adv. 61, 108044 (2022).
pubmed: 36152893 doi: 10.1016/j.biotechadv.2022.108044
Kirui, A. et al. Carbohydrate-aromatic interface and molecular architecture of lignocellulose. Nat. Commun. 13, 538 (2022).
pubmed: 35087039 pmcid: 8795156 doi: 10.1038/s41467-022-28165-3
Yang, Q. & Pan, X. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 113, 1213–1224 (2016).
pubmed: 26666388 doi: 10.1002/bit.25903
Lai, C. et al. Lignin fractionation to realize the comprehensive elucidation of structure-inhibition relationship of lignins in enzymatic hydrolysis. Bioresour. Technol. 355, 127255 (2022).
pubmed: 35526719 doi: 10.1016/j.biortech.2022.127255
Xu, L. et al. Unveiling the role of long-range and short-range forces in the non-productive adsorption between lignin and cellulases at different temperatures. J. Colloid Interf. Sci. 647, 318–330 (2023).
doi: 10.1016/j.jcis.2023.05.152
Pihlajaniemi, V. et al. Weighing the factors behind enzymatic hydrolyzability of pretreated lignocellulose. Green Chem. 18, 1295–1305 (2016).
doi: 10.1039/C5GC01861G
Guo, H. et al. Is oxidation–reduction a real robust strategy for lignin conversion? A comparative study on lignin and model compounds. Green Chem. 21, 803–811 (2019).
doi: 10.1039/C8GC02670J
Ruijten, D. et al. Tertiary amines from RCF lignin mono- and dimers: catalytic N-functionalized antioxidants from wood. ACS Sustain. Chem. Eng. 11, 4776–4788 (2023).
doi: 10.1021/acssuschemeng.2c07343
Li, H. et al. Photocatalytic cleavage of aryl ether in modified lignin to non-phenolic aromatics. ACS Catal. 9, 8843–88851 (2019).
doi: 10.1021/acscatal.9b02719
Van den Bosch, S. et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 8, 1748–1763 (2015).
doi: 10.1039/C5EE00204D
Kumaniaev, I. et al. Lignin depolymerization to monophenolic compounds in a flow-through system. Green Chem. 19, 5767–5771 (2017).
doi: 10.1039/C7GC02731A
Parsell, T. et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chem. 17, 1492–1499 (2015).
doi: 10.1039/C4GC01911C
Dao, T. H. et al. Identification and quantification of lignin monomers and oligomers from reductive catalytic fractionation of pine wood with GC × GC – FID/MS. Green Chem. 24, 191–206 (2022).
doi: 10.1039/D1GC03822B
Galkin, M. V. & Samec, J. S. M. Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9, 1544–1558 (2016).
pubmed: 27273230 doi: 10.1002/cssc.201600237
Farberov, M. I., Antonova, V. V., Ustavshchikov, B. F. & Titova, N. A. Synthesis of pyridine bases from aldehydes and ammonia (review). Chem. Heterocycl. Compd. 11, 1349–1353 (1975).
doi: 10.1007/BF00764521
Li, H. et al. Amine-mediated bond cleavage in oxidized lignin models. ChemSusChem 13, 4660–44665 (2020).
pubmed: 32539209 doi: 10.1002/cssc.202001228
Varshney, S. & Mishra, N. Chapter 2—Pyridine-based polymers and derivatives: synthesis and applications. in Recent Developments in the Synthesis and Applications of Pyridines (ed. Singh, P.) (Elsevier, 2023).
Li, H. et al. NH2OH–mediated lignin conversion to isoxazole and nitrile. ACS Sustain. Chem. Eng. 6, 3748–3753 (2018).
doi: 10.1021/acssuschemeng.7b04114
Dong, L. et al. Sustainable production of dopamine hydrochloride from softwood lignin. Nat. Commun. 14, 4996 (2023).
pubmed: 37591869 pmcid: 10435513 doi: 10.1038/s41467-023-40702-2
Bains, R., Kumar, A., Chauhan, A. S. & Das, P. Dimethyl carbonate solvent assisted efficient conversion of lignocellulosic biomass to 5-hydroxymethylfurfural and furfural. Renew. Energy 197, 237–243 (2022).
doi: 10.1016/j.renene.2022.07.076
Kang, S., Fu, J. & Zhang, G. From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renew. Sustain. Energy Rev. 94, 340–362 (2018).
doi: 10.1016/j.rser.2018.06.016
Ntakirutimana, S. et al. Amine-based pretreatments for lignocellulose fractionation and lignin valorization: a review. Green Chem. 24, 5460–5478 (2022).
doi: 10.1039/D2GC01423H
Chem Analyst. Pyridine Price Trend and Forecast. https://www.chemanalyst.com/Pricing-data/pyridine-1172 (2023).
Qin, L. et al. Ethylenediamine pretreatment changes cellulose allomorph and lignin structure of lignocellulose at ambient pressure. Biotechnol. Biofuels 8, 174 (2015).
pubmed: 26516347 pmcid: 4625619 doi: 10.1186/s13068-015-0359-z
Xu, L. et al. High-solid ethylenediamine pretreatment to fractionate new lignin streams from lignocellulosic biomass. Chem. Eng. J. 427, 130962 (2022).
doi: 10.1016/j.cej.2021.130962
Ntakirutimana, S. et al. Chemomechanical pretreatment for efficient delignification and saccharification of corn stover biomass. Chem. Eng. J. 471, 144588 (2023).
doi: 10.1016/j.cej.2023.144588
Ai, B. et al. Natural deep eutectic solvent mediated extrusion for continuous high-solid pretreatment of lignocellulosic biomass. Green Chem. 22, 6372–6383 (2020).
doi: 10.1039/D0GC01560A

Auteurs

Li Xu (L)

Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.

Meifang Cao (M)

Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.

Jiefeng Zhou (J)

Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.

Yuxia Pang (Y)

Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.

Zhixian Li (Z)

Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.

Dongjie Yang (D)

Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.

Shao-Yuan Leu (SY)

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

Hongming Lou (H)

Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China. cehmlou@scut.edu.cn.

Xuejun Pan (X)

Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.

Xueqing Qiu (X)

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China. qxq@gdut.edu.cn.

Classifications MeSH