An appraisal of lung computer tomography in very early anti-inflammatory treatment of two different ovine ARDS phenotypes.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 Jan 2024
25 Jan 2024
Historique:
received:
29
10
2023
accepted:
22
01
2024
medline:
26
1
2024
pubmed:
26
1
2024
entrez:
25
1
2024
Statut:
epublish
Résumé
Mortality and morbidity of Acute Respiratory Distress Syndrome (ARDS) are largely unaltered. A possible new approach to treatment of ARDS is offered by the discovery of inflammatory subphenotypes. In an ovine model of ARDS phenotypes, matching key features of the human subphenotypes, we provide an imaging characterization using computer tomography (CT). Nine animals were randomized into (a) OA (oleic acid, hypoinflammatory; n = 5) and (b) OA-LPS (oleic acid and lipopolysaccharides, hyperinflammatory; n = 4). 48 h after ARDS induction and anti-inflammatory treatment, CT scans were performed at high (H) and then low (L) airway pressure. After CT, the animals were euthanized and lung tissue was collected. OA-LPS showed a higher air fraction and OA a higher tissue fraction, resulting in more normally aerated lungs in OA-LPS in contrast to more non-aerated lung in OA. The change in lung and air volume between H and L was more accentuated in OA-LPS, indicating a higher recruitment potential. Strain was higher in OA, indicating a higher level of lung damage, while the amount of lung edema and histological lung injury were largely comparable. Anti-inflammatory treatment might be beneficial in terms of overall ventilated lung portion and recruitment potential, especially in the OA-LPS group.
Identifiants
pubmed: 38272980
doi: 10.1038/s41598-024-52698-w
pii: 10.1038/s41598-024-52698-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2162Informations de copyright
© 2024. The Author(s).
Références
Ashbaugh, D. G., Bigelow, D. B., Petty, T. L. & Levine, B. E. Acute respiratory distress in adults. Lancet 2, 319–323 (1967).
pubmed: 4143721
doi: 10.1016/S0140-6736(67)90168-7
Cressoni, M. et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 189, 149–158 (2014).
pubmed: 24261322
doi: 10.1164/rccm.201308-1567OC
Protti, A. et al. Lung stress and strain during mechanical ventilation: Any safe threshold?. Am. J. Respir. Crit. Care Med. 183, 1354–1362 (2011).
pubmed: 21297069
doi: 10.1164/rccm.201010-1757OC
Protti, A. et al. Lung stress and strain during mechanical ventilation: Any difference between statics and dynamics?. Crit. Care Med. 41, 1046–1055 (2013).
pubmed: 23385096
doi: 10.1097/CCM.0b013e31827417a6
Adhikari, N. K. J. et al. Inhaled nitric oxide does not reduce mortality in patients with acute respiratory distress syndrome regardless of severity. Crit. Care Med. 42, 404–412 (2014).
pubmed: 24132038
doi: 10.1097/CCM.0b013e3182a27909
Gattinoni, L., Pesenti, A., Avalli, L., Rossi, F. & Bombino, M. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am. Rev. Respir. Dis. 136, 730–736 (1987).
pubmed: 3307572
doi: 10.1164/ajrccm/136.3.730
Gattinoni, L., Caironi, P., Pelosi, P. & Goodman, L. R. What has computed tomography taught us about the acute respiratory distress syndrome?. Am. J. Respir. Crit. Care Med. 164, 1701–1711 (2001).
pubmed: 11719313
doi: 10.1164/ajrccm.164.9.2103121
Crotti, S. et al. Recruitment and derecruitment during acute respiratory failure: A clinical study. Am. J. Respir. Crit. Care Med. 164, 131–140 (2001).
pubmed: 11435251
doi: 10.1164/ajrccm.164.1.2007011
Gattinoni, L. et al. Lung recruitment in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 354, 1775–1786 (2006).
pubmed: 16641394
doi: 10.1056/NEJMoa052052
Guérin, C. et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 368, 2159–2168 (2013).
pubmed: 23688302
doi: 10.1056/NEJMoa1214103
Brower, R. G. et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342, 1301–1308 (2000).
pubmed: 10793162
doi: 10.1056/NEJM200005043421801
Guérin, C. et al. Prone position in ARDS patients: Why, when, how and for whom. Intensive Care Med. https://doi.org/10.1007/s00134-020-06306-w (2020).
doi: 10.1007/s00134-020-06306-w
pubmed: 33175276
pmcid: 7655906
Lamm, W. J., Graham, M. M. & Albert, R. K. Mechanism by which the prone position improves oxygenation in acute lung injury. Am. J. Resp. Crit. Care. Med. 150, 184–193 (1994).
pubmed: 8025748
doi: 10.1164/ajrccm.150.1.8025748
Santini, A. et al. Prone position ameliorates lung elastance and increases functional residual capacity independently from lung recruitment. Intensive Care Med. Exp. 3, 1–8 (2015).
doi: 10.1186/s40635-015-0055-0
Albert, R. K., Leasa, D., Sanderson, M., Robertson, H. T. & Hlastala, M. P. The prone position improves arterial oxygenation and reduces shunt in oleic-acid-induced acute lung injury. Am. Rev. Resp. Dis. 135, 628–633 (1987).
pubmed: 3030168
Bellani, G. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. J. Am. Med. Assoc. 315, 788–800 (2016).
doi: 10.1001/jama.2016.0291
Calfee, C. S. et al. Subphenotypes in acute respiratory distress syndrome: Latent class analysis of data from two randomised controlled trials. Lancet Respir. Med. 2, 611–620 (2014).
pubmed: 24853585
pmcid: 4154544
doi: 10.1016/S2213-2600(14)70097-9
Famous, K. R. et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am. J. Respir. Crit. Care Med. 195, 331–338 (2017).
pubmed: 27513822
pmcid: 5328179
doi: 10.1164/rccm.201603-0645OC
Bos, L. D. et al. Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis. Thorax 72, 876–883 (2017).
pubmed: 28450529
doi: 10.1136/thoraxjnl-2016-209719
Calfee, C. S. et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir. Med. 6, 691–698 (2018).
pubmed: 30078618
pmcid: 6201750
doi: 10.1016/S2213-2600(18)30177-2
Sinha, P. et al. Latent class analysis-derived subphenotypes are generalisable to observational cohorts of acute respiratory distress syndrome: A prospective study. Thorax 77, 13–21 (2022).
pubmed: 34253679
doi: 10.1136/thoraxjnl-2021-217158
Sinha, P. et al. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med. 44, 1859–1869 (2018).
pubmed: 30291376
pmcid: 6317524
doi: 10.1007/s00134-018-5378-3
Sinha, P. et al. Latent class analysis reveals COVID-19–related acute respiratory distress syndrome subgroups with differential responses to corticosteroids. Am. J. Respir. Crit. Care Med. 204, 1274–1285 (2021).
pubmed: 34543591
pmcid: 8786071
doi: 10.1164/rccm.202105-1302OC
Chen, H. et al. Corticosteroid therapy is associated with improved outcome in critically ill patients with COVID-19 with hyperinflammatory phenotype. Chest 159, 1793–1802 (2021).
pubmed: 33316235
doi: 10.1016/j.chest.2020.11.050
Prescott, H. C., Calfee, C. S., Taylor Thompson, B., Angus, D. C. & Liu, V. X. Toward smarter lumping and smarter splitting: Rethinking strategies for sepsis and acute respiratory distress syndrome clinical trial design. Am. J. Respir. Crit. Care Med. 194, 147–155 (2016).
pubmed: 27244481
pmcid: 5003218
doi: 10.1164/rccm.201512-2544CP
Ware, L. B., Matthay, M. A. & Mebazaa, A. Designing an ARDS trial for 2020 and beyond: Focus on enrichment strategies. Intensive Care Med. https://doi.org/10.1007/s00134-020-06232-x (2020).
doi: 10.1007/s00134-020-06232-x
pubmed: 33206201
pmcid: 7673253
Wick, K. D. et al. Promises and challenges of personalized medicine to guide ARDS therapy. Crit. Care 25, 1–15 (2021).
doi: 10.1186/s13054-021-03822-z
Goodman, L. R. et al. Adult respiratory distress syndrome due to pulmonary and extrapulmonary causes: CT, clinical, and functional correlations. Radiology 213, 545–552 (1999).
pubmed: 10551239
doi: 10.1148/radiology.213.2.r99nv42545
Terragni, P. P. et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 175, 160–166 (2007).
pubmed: 17038660
doi: 10.1164/rccm.200607-915OC
Constantin, J.-M. et al. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): A multicentre, single-blind, randomised controlled trial. Lancet Respir. Med. 7, 870–880 (2019).
pubmed: 31399381
doi: 10.1016/S2213-2600(19)30138-9
Millar, J. E. et al. Characterizing preclinical sub-phenotypic models of acute respiratory distress syndrome: An experimental ovine study. Physiol. Rep. 9, e15048 (2021).
pubmed: 34617676
pmcid: 8495778
doi: 10.14814/phy2.15048
Wildi, K. et al. Validation of messenger ribonucleic acid markers differentiating among human acute respiratory distress syndrome subgroups in an ovine model of acute respiratory distress syndrome phenotypes. Front. Med. 9, 1–7 (2022).
doi: 10.3389/fmed.2022.961336
Wildi, K. et al. Application of anti-inflammatory treatment in two different ovine Acute Respiratory Distress Syndrome injury models: A preclinical randomized intervention study. Sci. Rep. 13, 17986 (2023).
pubmed: 37863994
pmcid: 10589361
doi: 10.1038/s41598-023-45081-8
Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).
pubmed: 32663221
pmcid: 7360025
doi: 10.1371/journal.pbio.3000411
Mercat, A. et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. J. Am. Med. Assoc. 299, 646–655 (2008).
doi: 10.1001/jama.299.6.646
Chiumello, D. et al. Assessment of lung aeration and recruitment by CT scan and ultrasound in acute respiratory distress syndrome patients. Crit. Care Med. 46, 1761–1768 (2018).
pubmed: 30048331
doi: 10.1097/CCM.0000000000003340
Coppola, S. et al. Respiratory mechanics, lung recruitability, and gas exchange in pulmonary and extrapulmonary acute respiratory distress syndrome. Crit. Care Med. 47, 792–799 (2019).
pubmed: 30908313
doi: 10.1097/CCM.0000000000003715
Cressoni, M. et al. Limits of normality of quantitative thoracic CT analysis. Crit. Care 17, 1–12 (2013).
doi: 10.1186/cc12738
Blankman, P., Hasan, D., Bikker, I. G. & Gommers, D. Lung stress and strain calculations in mechanically ventilated patients in the intensive care unit. Acta Anaesthesiol. Scand. 60, 69–78 (2016).
pubmed: 26192561
doi: 10.1111/aas.12589
Bouquet, M. et al. Development and validation of ELISAs for the quantitation of interleukin (IL)-1β, IL-6, IL-8 and IL-10 in ovine plasma. J. Immunol. Methods 486, 112835 (2020).
pubmed: 32828792
doi: 10.1016/j.jim.2020.112835
Matute-Bello, G. et al. An official american thoracic society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Resp. Cell. Mol. Biol. 44, 725–738 (2011).
doi: 10.1165/rcmb.2009-0210ST
Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids—New mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).
pubmed: 16236742
doi: 10.1056/NEJMra050541
Meduri, G. U., Muthiah, M. P., Carratu, P., Eltorky, M. & Chrousos, G. P. Nuclear factor-κB- and glucocorticoid receptor α-mediated mechanisms in the regulation of systemic and pulmonary inflammation during sepsis and acute respiratory distress syndrome: Evidence for inflammation-induced target tissue resistance to glucocortico. Neuroimmunomodulation 12, 321–338 (2005).
pubmed: 16557033
doi: 10.1159/000091126
Umberto Meduri, G., Tolley, E. A., Chrousos, G. P. & Stentz, F. Prolonged methylprednisolone treatment suppresses systemic inflammation in patients with unresolving acute respiratory distress syndrome: Evidence for inadequate endogenous glucocorticoid secretion and inflammation-induced immune cell resistance to glucoc. Am. J. Respir. Crit. Care Med. 165, 983–991 (2002).
pubmed: 11934726
doi: 10.1164/ajrccm.165.7.2106014
Moine, P. et al. NF-κB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome. Shock 13, 85–91 (2000).
pubmed: 10670837
doi: 10.1097/00024382-200013020-00001
Chen, H., Bai, C. & Wang, X. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Rev. Respir. Med. 4, 773–783 (2010).
pubmed: 21128752
doi: 10.1586/ers.10.71
Retamal, J. et al. Does regional lung strain correlate with regional inflammation in acute respiratory distress syndrome during nonprotective ventilation? An experimental porcine study. Crit. Care Med. 46, p591-599 (2018).
doi: 10.1097/CCM.0000000000003072
Wendel Garcia, P. D. et al. Latent class analysis to predict intensive care outcomes in Acute Respiratory Distress Syndrome: A proposal of two pulmonary phenotypes. Crit. Care 25, 1–11 (2021).
doi: 10.1186/s13054-021-03578-6