The methodology of quantitative risk assessment studies.

Dose–response Environment Hazard Health impact Policy Risk

Journal

Environmental health : a global access science source
ISSN: 1476-069X
Titre abrégé: Environ Health
Pays: England
ID NLM: 101147645

Informations de publication

Date de publication:
27 Jan 2024
Historique:
received: 23 06 2023
accepted: 05 12 2023
medline: 28 1 2024
pubmed: 28 1 2024
entrez: 27 1 2024
Statut: epublish

Résumé

Once an external factor has been deemed likely to influence human health and a dose response function is available, an assessment of its health impact or that of policies aimed at influencing this and possibly other factors in a specific population can be obtained through a quantitative risk assessment, or health impact assessment (HIA) study. The health impact is usually expressed as a number of disease cases or disability-adjusted life-years (DALYs) attributable to or expected from the exposure or policy. We review the methodology of quantitative risk assessment studies based on human data. The main steps of such studies include definition of counterfactual scenarios related to the exposure or policy, exposure(s) assessment, quantification of risks (usually relying on literature-based dose response functions), possibly economic assessment, followed by uncertainty analyses. We discuss issues and make recommendations relative to the accuracy and geographic scale at which factors are assessed, which can strongly influence the study results. If several factors are considered simultaneously, then correlation, mutual influences and possibly synergy between them should be taken into account. Gaps or issues in the methodology of quantitative risk assessment studies include 1) proposing a formal approach to the quantitative handling of the level of evidence regarding each exposure-health pair (essential to consider emerging factors); 2) contrasting risk assessment based on human dose-response functions with that relying on toxicological data; 3) clarification of terminology of health impact assessment and human-based risk assessment studies, which are actually very similar, and 4) other technical issues related to the simultaneous consideration of several factors, in particular when they are causally linked.

Identifiants

pubmed: 38281011
doi: 10.1186/s12940-023-01039-x
pii: 10.1186/s12940-023-01039-x
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

13

Subventions

Organisme : European Commission
ID : Grant 825417 funded by Horizon Europe research and innovation programme (HERA project)
Organisme : European Commission
ID : Grant 825417 funded by Horizon Europe research and innovation programme (HERA project)
Organisme : European Commission
ID : Grant 825417 funded by Horizon Europe research and innovation programme (HERA project)
Organisme : European Commission
ID : Grant 825417 funded by Horizon Europe research and innovation programme (HERA project)
Organisme : European Commission
ID : Grant 825417 funded by Horizon Europe research and innovation programme (HERA project)
Organisme : European Commission
ID : Grant 825417 funded by Horizon Europe research and innovation programme (HERA project)
Organisme : European Commission
ID : Grant 825417 funded by Horizon Europe research and innovation programme (HERA project)

Informations de copyright

© 2024. The Author(s).

Références

National Research Council. Risk assessment in the federal government. Managing the process. Washington, DC: National Academy Press; 1983.
National Research Council (U.S.). Committee on Risk Assessment of Hazardous Air Pollutants. Science and judgment in risk assessment. Washington, D.C: National Academy Press; 1994.
Cole BL, Fielding JE. Health impact assessment: a tool to help policy makers understand health beyond health care. Annu Rev Public Health. 2007;28:393–412.
doi: 10.1146/annurev.publhealth.28.083006.131942
Bell ML, Davis DL. Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution. Environ Health Perspect. 2001;109(Suppl 3):389–94.
doi: 10.1289/ehp.01109s3389
Clancy L, Goodman P, Sinclair H, Dockery DW. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet. 2002;360(9341):1210–4.
doi: 10.1016/S0140-6736(02)11281-5
Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions. Am J Public Health. 1998;88(1):15–9.
doi: 10.2105/AJPH.88.1.15
Poole C. A history of the population attributable fraction and related measures. Ann Epidemiol. 2015;25(3):147–54.
doi: 10.1016/j.annepidem.2014.11.015
Greenland S, Robins JM. Conceptual problems in the definition and interpretation of attributable fractions. Am J Epidemiol. 1988;128(6):1185–97.
doi: 10.1093/oxfordjournals.aje.a115073
Bobst S. History of risk assessment in toxicology. London, San Diego: Academic Press is an imprint of Elsevier; 2017.
Mindell JS, Boltong A, Forde I. A review of health impact assessment frameworks. Public Health. 2008;122(11):1177–87.
doi: 10.1016/j.puhe.2008.03.014
Slama R. Causes et conditions extérieures des maladies et de la santé. Paris: Collège de France/Fayard; 2022.
doi: 10.4000/books.cdf.14435
Trasande L, Zoeller RT, Hass U, Kortenkamp A, Grandjean P, Myers JP, DiGangi J, Hunt PM, Rudel R, Sathyanarayana S, et al. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis. Andrology. 2016;4(4):565–72.
doi: 10.1111/andr.12178
Shaffer RM, Sellers SP, Baker MG, de Buen Kalman R, Frostad J, Suter MK, Anenberg SC, Balbus J, Basu N, Bellinger DC, et al. Improving and expanding estimates of the global burden of disease due to environmental health risk factors. Environ Health Perspect. 2019;127(10):105001.
doi: 10.1289/EHP5496
G. B. D. Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1223–49.
doi: 10.1016/S0140-6736(20)30752-2
OECD. OECD Environmental Outlook to 2050: the consequences of inaction. In: OECD Environmental Outlook. 2012.
Fillol C, Oleko A, Saoudi A, Zeghnoun A, Balicco A, Gane J, Rambaud L, Leblanc A, Gaudreau E, Marchand P, et al. Exposure of the French population to bisphenols, phthalates, parabens, glycol ethers, brominated flame retardants, and perfluorinated compounds in 2014–2016: results from the Esteban study. Environ Int. 2021;147:106340.
doi: 10.1016/j.envint.2020.106340
Lobo Vicente J, Ganzleben C, Gasol R, Marnane I, Gilles L, Buekers J, Bessems J, Colles A, Gerofke A, David M, et al. HBM4EU results support the chemicals’ strategy for sustainability and the zero-pollution action plan. Int J Hyg Environ Health. 2023;248:114111.
doi: 10.1016/j.ijheh.2023.114111
Lebret E. Integrated environmental health impact assessment for risk governance purposes; across what do we integrate? (INTARESE HEIMTSA). Int J Environ Res Public Health. 2015;13(1):71.
doi: 10.3390/ijerph13010071
Briggs DJ. A framework for integrated environmental health impact assessment of systemic risks. Environ Health. 2008;7:61.
doi: 10.1186/1476-069X-7-61
Harris-Roxas B, Viliani F, Bond A, Cave B, Divall M, Furu P, Harris P, Soeberg M, Wernham A, Winkler M. Health impact assessment: the state of the art. Impact Assess Proj Apprais. 2012;30(1):43–52.
doi: 10.1080/14615517.2012.666035
Nieuwenhuijsen MJ, Khreis H, Verlinghieri E, Mueller N, Rojas-Rueda D. Participatory quantitative health impact assessment of urban and transport planning in cities: a review and research needs. Environ Int. 2017;103:61–72.
doi: 10.1016/j.envint.2017.03.022
Brown SL. Quantitative risk assessment of environmental hazards. Annu Rev Public Health. 1985;6:247–67.
doi: 10.1146/annurev.pu.06.050185.001335
Goldstein BD. Advances in risk assessment and communication. Annu Rev Public Health. 2005;26:141–63.
doi: 10.1146/annurev.publhealth.26.021304.144410
Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Info Libr J. 2009;26(2):91–108.
doi: 10.1111/j.1471-1842.2009.00848.x
Health impact assessment (HIA) tools and methods. https://www.who.int/tools/health-impact-assessments .
Kunzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P, Herry M, Horak F Jr, Puybonnieux-Texier V, Quenel P, et al. Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet. 2000;356(9232):795–801.
doi: 10.1016/S0140-6736(00)02653-2
Barboza EP, Cirach M, Khomenko S, Iungman T, Mueller N, Barrera-Gomez J, Rojas-Rueda D, Kondo M, Nieuwenhuijsen M. Green space and mortality in European cities: a health impact assessment study. Lancet Planet Health. 2021;5(10):e718-730.
doi: 10.1016/S2542-5196(21)00229-1
Lhachimi SK, Nusselder WJ, Smit HA, Baili P, Bennett K, Fernandez E, Kulik MC, Lobstein T, Pomerleau J, Boshuizen HC, et al. Potential health gains and health losses in eleven EU countries attainable through feasible prevalences of the life-style related risk factors alcohol, BMI, and smoking: a quantitative health impact assessment. BMC Public Health. 2016;16:734.
doi: 10.1186/s12889-016-3299-z
Bouscasse H, Gabet S, Kerneis G, Provent A, Rieux C, Ben Salem N, Dupont H, Troude F, Mathy S, Slama R. Designing local air pollution policies focusing on mobility and heating to avoid a targeted number of pollution-related deaths: Forward and backward approaches combining air pollution modeling, health impact assessment and cost-benefit analysis. Environ Int. 2022;159:107030.
doi: 10.1016/j.envint.2021.107030
Zeng Z, Cook AR, Chen JI, van der Eijk Y. Evaluating the public health impact of partial and full Tobacco flavour bans: a simulation study. Lancet Reg Health West Pac. 2022;21:100414.
doi: 10.1016/j.lanwpc.2022.100414
Martínez-Solanas È, Quijal-Zamorano M, Achebak H, Petrova D, Robine JM, Herrmann FR, Rodó X, Ballester J. Projections of temperature-attributable mortality in Europe: a time series analysis of 147 contiguous regions in 16 countries. Lancet Planet Health. 2021;5(7):e446-454.
doi: 10.1016/S2542-5196(21)00150-9
Pearl J, Glymour M, Jewell NP. Causal inference in statistics: a primer. Chichester: John Wiley & Sons Ltd; 2016. p. 1 online resource.
Hernan MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & Hall/CRC; 2020.
Morelli X, Rieux C, Cyrys J, Forsberg B, Slama R. Air pollution, health and social deprivation: a fine-scale risk assessment. Environ Res. 2016;147:59–70.
doi: 10.1016/j.envres.2016.01.030
Pascal M, Corso M, Chanel O, Declercq C, Badaloni C, Cesaroni G, Henschel S, Meister K, Haluza D, Martin-Olmedo P, et al. Aphekom - assessing the public health impacts of urban air pollution in 25 European cities: results of the Aphekom project. Sci Total Environ. 2013;449:390–400.
doi: 10.1016/j.scitotenv.2013.01.077
Mueller N, Rojas-Rueda D, Basagana X, Cirach M, Cole-Hunter T, Dadvand P, Donaire-Gonzalez D, Foraster M, Gascon M, Martinez D, et al. Urban and transport planning related exposures and mortality: a health impact assessment for cities. Environ Health Perspect. 2017;125(1):89–96.
doi: 10.1289/EHP220
van Dijk A, Slaper H, den Outer PN, Morgenstern O, Braesicke P, Pyle JA, Garny H, Stenke A, Dameris M, Kazantzidis A, et al. Skin cancer risks avoided by the Montreal protocol–worldwide modeling integrating coupled climate-chemistry models with a risk model for UV. Photochem Photobiol. 2013;89(1):234–46.
doi: 10.1111/j.1751-1097.2012.01223.x
Dimick JB, Ryan AM. Methods for evaluating changes in health care policy: the difference-in-differences approach. JAMA. 2014;312(22):2401–2.
doi: 10.1001/jama.2014.16153
Petkova EP, Gasparrini A, Kinney PL. Heat and mortality in New York City since the beginning of the 20th century. Epidemiology. 2014;25(4):554–60.
doi: 10.1097/EDE.0000000000000123
Morelli X, Gabet S, Rieux C, Bouscasse H, Mathy S, Slama R. Which decreases in air pollution should be targeted to bring health and economic benefits and improve environmental justice? Environ Int. 2019;129:538–50.
doi: 10.1016/j.envint.2019.04.077
What are the WHO air quality guidelines? https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-guidelines .
Rothman KJ, Gallacher JE, Hatch EE. Why representativeness should be avoided. Int J Epidemiol. 2013;42(4):1012–4.
doi: 10.1093/ije/dys223
Nieuwenhuijsen M, Paustenbach D, Duarte-Davidson R. New developments in exposure assessment: the impact on the practice of health risk assessment and epidemiological studies. Environ Int. 2006;32(8):996–1009.
doi: 10.1016/j.envint.2006.06.015
Heinrich J, Gehring U, Cyrys J, Brauer M, Hoek G, Fischer P, Bellander T, Brunekreef B. Exposure to traffic related air pollutants: self reported traffic intensity versus GIS modelled exposure. Occup Environ Med. 2005;62(8):517–23.
doi: 10.1136/oem.2004.016766
Traore T, Forhan A, Sirot V, Kadawathagedara M, Heude B, Hulin M, de Lauzon-Guillain B, Botton J, Charles MA, Crepet A. To which mixtures are French pregnant women mainly exposed? A combination of the second French total diet study with the EDEN and ELFE cohort studies. Food Chem Toxicol. 2018;111:310–28.
doi: 10.1016/j.fct.2017.11.016
Villanueva CM, Cantor KP, Grimalt JO, Malats N, Silverman D, Tardon A, Garcia-Closas R, Serra C, Carrato A, Castano-Vinyals G, et al. Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. Am J Epidemiol. 2007;165(2):148–56.
doi: 10.1093/aje/kwj364
Ouidir M, Giorgis-Allemand L, Lyon-Caen S, Morelli X, Cracowski C, Pontet S, Pin I, Lepeule J, Siroux V, Slama R. Estimation of exposure to atmospheric pollutants during pregnancy integrating space-time activity and indoor air levels: does it make a difference? Environ Int. 2015;84:161–73.
doi: 10.1016/j.envint.2015.07.021
Woodward H, Schroeder A, de Nazelle A, Pain CC, Stettler MEJ, ApSimon H, Robins A, Linden PF. Do we need high temporal resolution modelling of exposure in urban areas? A test case. Sci Total Environ. 2023;885:163711.
doi: 10.1016/j.scitotenv.2023.163711
de Hoogh K, Korek M, Vienneau D, Keuken M, Kukkonen J, Nieuwenhuijsen MJ, Badaloni C, Beelen R, Bolignano A, Cesaroni G, et al. Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies. Environ Int. 2014;73:382–92.
doi: 10.1016/j.envint.2014.08.011
Sellier Y, Galineau J, Hulin A, Caini F, Marquis N, Navel V, Bottagisi S, Giorgis-Allemand L, Jacquier C, Slama R, et al. Health effects of ambient air pollution: do different methods for estimating exposure lead to different resifts? Environ Int. 2014;66:165–73.
doi: 10.1016/j.envint.2014.02.001
Kulhánová I, Morelli X, Le Tertre A, Loomis D, Charbotel B, Medina S, Ormsby J-N, Lepeule J, Slama R, Soerjomataram I. The fraction of lung cancer incidence attributable to fine particulate air pollution in France: impact of spatial resolution of air pollution models. Environ Int. 2018;121:1079–86.
doi: 10.1016/j.envint.2018.09.055
Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, Hoffmann B, Fischer P, Nieuwenhuijsen MJ, Brunekreef B, et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013;14(9):813–22.
doi: 10.1016/S1470-2045(13)70279-1
Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, Vineis P, Forastiere F, Saldiva P, Yorifuji T, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014;122(9):906–11.
doi: 10.1289/ehp/1408092
Nieuwenhuijsen MJ, Donaire-Gonzalez D, Foraster M, Martinez D, Cisneros A. Using personal sensors to assess the exposome and acute health effects. Int J Environ Res Public Health. 2014;11(8):7805–19.
doi: 10.3390/ijerph110807805
Brunekreef B, Noy D, Clausing P. Variability of exposure measurements in environmental epidemiology. Am J Epidemiol. 1987;125(5):892–8.
doi: 10.1093/oxfordjournals.aje.a114606
Avery CL, Mills KT, Williams R, McGraw KA, Poole C, Smith RL, Whitsel EA. Estimating error in using ambient PM2.5 concentrations as proxies for personal exposures: a review. Epidemiology. 2010;21(2):215–23.
doi: 10.1097/EDE.0b013e3181cb41f7
Avery CL, Mills KT, Williams R, McGraw KA, Poole C, Smith RL, Whitsel EA. Estimating error in using residential outdoor PM2.5 concentrations as proxies for personal exposures: a meta-analysis. Environ Health Perspect. 2010;118(5):673–8.
doi: 10.1289/ehp.0901158
Nethery E. From measures to models: predicting exposure to air pollution among pregnant women. MSc. Vancouver: The University of British Columbia; 2007.
Ballesta PP, Field RA, Connolly R, Cao N, Baeza Caracena A, De Saeger E. Population exposure to benzene: one day cross-sections in six European cities. Atmospheric Environ. 2006;40(18):3355–66.
doi: 10.1016/j.atmosenv.2006.01.053
Slama R, Thiebaugeorges O, Goua V, Aussel L, Sacco P, Bohet A, Forhan A, Ducot B, Annesi-Maesano I, Heinrich J, et al. Maternal personal exposure to airborne benzene and intrauterine growth. Environ Health Perspect. 2009;117(8):1313–21.
doi: 10.1289/ehp.0800465
Li C, Li Q, Tong D, Wang Q, Wu M, Sun B, Su G, Tan L. Environmental impact and health risk assessment of volatile organic compound emissions during different seasons in Beijing. J Environ Sci (China). 2020;93:1–12.
doi: 10.1016/j.jes.2019.11.006
Zhang R, Smit AK, Espinoza D, Allen M, Reyes-Marcelino G, Kimlin MG, Lo SN, Sharman AR, Law MH, Kanetsky PA, et al. Validation of self-reported sun exposure against electronic ultraviolet radiation dosimeters. Int J Epidemiol. 2022;52(1):324–8.
doi: 10.1093/ije/dyac179
Kreuzer M, Heinrich J, Wolke G, Schaffrath Rosario A, Gerken M, Wellmann J, Keller G, Kreienbrock L, Wichmann HE. Residential radon and risk of lung cancer in Eastern Germany. Epidemiology. 2003;14(5):559–68.
doi: 10.1097/01.ede.0000071410.26053.c4
Jacobs N, Roberts B, Reamer H, Mathis C, Gaffney S, Neitzel R. Noise exposures in different community settings measured by traditional dosimeter and smartphone app. Appl Acoust. 2020;167:107408.
doi: 10.1016/j.apacoust.2020.107408
Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ Health Perspect. 2011;119(6):878–85.
doi: 10.1289/ehp.1002727
Calafat AM, Ye X, Silva MJ, Kuklenyik Z, Needham LL. Human exposure assessment to environmental chemicals using biomonitoring. Int J Androl. 2006;29(1):166–71 discussion 181 – 165.
doi: 10.1111/j.1365-2605.2005.00570.x
Dereumeaux C, Fillol C, Charles MA, Denys S. The French human biomonitoring program: first lessons from the perinatal component and future needs. Int J Hyg Environ Health. 2017;220(2 Pt A):64–70.
doi: 10.1016/j.ijheh.2016.11.005
Haug LS, Sakhi AK, Cequier E, Casas M, Maitre L, Basagana X, Andrusaityte S, Chalkiadaki G, Chatzi L, Coen M, et al. In-utero and childhood chemical exposome in six European mother-child cohorts. Environ Int. 2018;121(Pt 1):751–63.
doi: 10.1016/j.envint.2018.09.056
Weisskopf MG, Webster TF. Trade-offs of personal versus more proxy exposure measures in environmental epidemiology. Epidemiology. 2017;28(5):635–43.
doi: 10.1097/EDE.0000000000000686
Perrier F, Giorgis-Allemand L, Slama R, Philippat C. Within-subject pooling of biological samples to reduce exposure misclassification in biomarker-based studies. Epidemiology. 2016;27(3):378–88.
doi: 10.1097/EDE.0000000000000460
Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 2012;5(2):47–58.
doi: 10.2478/v10102-012-0009-2
Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, et al. Guidance on the use of the weight of evidence approach in scientific assessments. EFSA J. 2017;15(8):e04971.
Martin P, Bladier C, Meek B, Bruyere O, Feinblatt E, Touvier M, Watier L, Makowski D. Weight of evidence for hazard identification: a critical review of the literature. Environ Health Perspect. 2018;126(7):076001.
doi: 10.1289/EHP3067
National Research Council. Review of EPA’s Integrated Risk Information System (IRIS) process. Washington, D.C: National Academies Press; 2014.
Trasande L, Zoeller RT, Hass U, Kortenkamp A, Grandjean P, Myers JP, DiGangi J, Bellanger M, Hauser R, Legler J, et al. Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European union. J Clin Endocrinol Metab. 2015;100(4):1245–55.
doi: 10.1210/jc.2014-4324
Hansen SF, von Krayer MP, Tickner JA. Categorizing mistaken false positives in regulation of human and environmental health. Risk Anal. 2007;27(1):255–69.
doi: 10.1111/j.1539-6924.2006.00874.x
Grandjean P. Science for precautionary decision-making. In: Late lessons from early warnings: science, precaution, innovation. Edited by Gee D et al. Copenhagen: Published by European environment agency (EEA); 2013. p. 623–642.  https://www.eea.europa.eu/publications/late-lessons-2 .
Pedeli X, Hoek G, Katsouyanni K. Risk assessment of diesel exhaust and lung cancer: combining human and animal studies after adjustment for biases in epidemiological studies. Environ Health. 2011;10:30.
doi: 10.1186/1476-069X-10-30
Malmqvist E, Oudin A, Pascal M, Medina S. Choices behind numbers: a review of the major air pollution health impact assessments in Europe. Curr Environ Health Rep. 2018;5(1):34–43.
doi: 10.1007/s40572-018-0175-2
Heid IM, Kuchenhoff H, Miles J, Kreienbrock L, Wichmann HE. Two dimensions of measurement error: classical and Berkson error in residential radon exposure assessment. J Expo Anal Environ Epidemiol. 2004;14(5):365–77.
doi: 10.1038/sj.jea.7500332
Lee IM, Skerrett PJ. Physical activity and all-cause mortality: what is the dose-response relation? Med Sci Sports Exerc. 2001;33(Supplement):S459–71.
doi: 10.1097/00005768-200106001-00016
Woodcock J, Franco OH, Orsini N, Roberts I. Non-vigorous physical activity and all-cause mortality: systematic review and meta-analysis of cohort studies. Int J Epidemiol. 2011;40(1):121–38.
doi: 10.1093/ije/dyq104
Pope CA 3rd, Cropper M, Coggins J, Cohen A. Health benefits of air pollution abatement policy: role of the shape of the concentration-response function. J Air Waste Manag Assoc. 2015;65(5):516–22.
doi: 10.1080/10962247.2014.993004
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33(3):378–455.
doi: 10.1210/er.2011-1050
Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA, Apte JS, Brauer M, Cohen A, Weichenthal S, et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci. 2018;115(38):9592–7.
doi: 10.1073/pnas.1803222115
Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rocklöv J, Forsberg B, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015;386(9991):369–75.
doi: 10.1016/S0140-6736(14)62114-0
Sattelmair J, Pertman J, Ding EL, Kohl HW 3rd, Haskell W, Lee IM. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011;124(7):789–95.
doi: 10.1161/CIRCULATIONAHA.110.010710
Slob W. Benchmark dose and the three rs. Part I. getting more information from the same number of animals. Crit Rev Toxicol. 2014;44(7):557–67.
doi: 10.3109/10408444.2014.925423
COMEAP. The mortality effects of long-term exposure to particulate air pollution in the United Kingdom. In: COMEAP (Committee on the medical effects of air pollutants). 2010. p. 98.
Mueller N, Anderle R, Brachowicz N, Graziadei H, Lloyd SJ, de Sampaio Morais G, Sironi AP, Gibert K, Tonne C, Nieuwenhuijsen M, et al. Model choice for quantitative health impact assessment and modelling: an expert consultation and narrative literature review. Int J Health Policy Manag. 2023;12:7103.
Di Domenico L, Pullano G, Sabbatini CE, Boelle PY, Colizza V. Modelling safe protocols for reopening schools during the COVID-19 pandemic in France. Nat Commun. 2021;12(1):1073.
doi: 10.1038/s41467-021-21249-6
Pearl J. On the interpretation of do(x). J Causal Inference. 2019;7(1):20192002.
doi: 10.1515/jci-2019-2002
Berry G. The analysis of mortality by the subject-years method. Biometrics. 1983;39(1):173–84.
doi: 10.2307/2530817
Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008.
Escher B, Braun G, Zarfl C. Exploring the concepts of concentration addition and independent action using a linear low-effect mixture model. Environ Toxicol Chem. 2020;39(12):2552–9.
doi: 10.1002/etc.4868
Ezzati M, Vander Hoorn S, Rodgers A, Lopez AD, Mathers CD, Murray CJL. Estimates of global and regional potentil health gains from reducing muliple major risk factors. Lancet. 2003;362(9380):271–80.
doi: 10.1016/S0140-6736(03)13968-2
Tamayo-Uria I, Maitre L, Thomsen C, Nieuwenhuijsen MJ, Chatzi L, Siroux V, Aasvang GM, Agier L, Andrusaityte S, Casas M, et al. The early-life exposome: description and patterns in six European countries. Environ Int. 2019;123:189–200.
doi: 10.1016/j.envint.2018.11.067
VanderWeele TJ. Mediation analysis: a practitioner’s guide. Annu Rev Public Health. 2016;37(1):17–32.
doi: 10.1146/annurev-publhealth-032315-021402
Ready R, Navrud S, Day B, Dubourg R, Machado F, Mourato S, Spanninks F, Vazquez Rodriquez MX. Benefit transfer in Europe: how reliable are transfers between countries? Environ Resour Econ. 2004;29:67–82.
doi: 10.1023/B:EARE.0000035441.37039.8a
Chilton S, Covey J, Jones-Lee M, Loomes G, Metcalf H. Valuation of health benefits associated with reductions in air pollution. London: DEFRA; 2004.
Cropper M, Hammitt JK, Robinson LA. Valuing mortality risk reductions: progress and challenges. Annu Rev Resource Econ. 2011;3(1):313–36.
doi: 10.1146/annurev.resource.012809.103949
Dekker T, Brouwer R, Hofkes M, Moeltner K. The effect of risk context on the value of a statistical life: a Bayesian meta-model. Environ Resour Econ. 2011;49(4):597–624.
doi: 10.1007/s10640-011-9456-z
Aven T. Risk assessment and risk management: review of recent advances on their foundation. Eur J Oper Res. 2016;253(1):1–13.
doi: 10.1016/j.ejor.2015.12.023
Knol AB, Petersen AC, van der Sluijs JP, Lebret E. Dealing with uncertainties in environmental burden of disease assessment. Environ Health. 2009;8:21.
doi: 10.1186/1476-069X-8-21
Fox MP, Lash TL. Quantitative bias analysis for study and grant planning. Ann Epidemiol. 2020;43:32–6.
doi: 10.1016/j.annepidem.2020.01.013
Baccini M, Grisotto L, Catelan D, Consonni D, Bertazzi PA, Biggeri A. Commuting-adjusted short-term health impact assessment of airborne fine particles with uncertainty quantification via Monte Carlo simulation. Environ Health Perspect. 2015;123(1):27–33.
doi: 10.1289/ehp.1408218
Burmaster DE, Anderson PD. Principles of good practice for the use of Monte Carlo techniques in human health and ecological risk assessments. Risk Anal. 1994;14(4):477–81.
doi: 10.1111/j.1539-6924.1994.tb00265.x
Guo X, Ji J, Khan F, Ding L, Tong Q. A novel fuzzy dynamic Bayesian network for dynamic risk assessment and uncertainty propagation quantification in uncertainty environment. Saf Sci. 2021;141:105285.
doi: 10.1016/j.ssci.2021.105285
Hu L, Kang R, Pan X, Zuo D. Uncertainty expression and propagation in the risk assessment of uncertain random system. IEEE Syst J. 2021;15(2):1604–15.
doi: 10.1109/JSYST.2020.2990679
Cole BL, MacLeod KE, Spriggs R. Health impact assessment of transportation projects and policies: living up to aims of advancing population health and health equity? Annu Rev Public Health. 2019;40:305–18.
doi: 10.1146/annurev-publhealth-040617-013836
Harris-Roxas B, Harris E. Differing forms, differing purposes: a typology of health impact assessment. Environ Impact Assess Rev. 2011;31(4):396–403.
doi: 10.1016/j.eiar.2010.03.003
Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen KH, More S, Mortensen A, Naegeli H, Noteborn H, Ockleford C, et al. Update: use of the benchmark dose approach in risk assessment. EFSA J. 2017;15(1):e04658.
Smith KR, Bruce N, Balakrishnan K, Adair-Rohani H, Balmes J, Chafe Z, Dherani M, Hosgood HD, Mehta S, Pope D, et al. Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annu Rev Public Health. 2014;35:185–206.
doi: 10.1146/annurev-publhealth-032013-182356

Auteurs

Maxime Rigaud (M)

Inserm, University of Grenoble Alpes, CNRS, IAB, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France.

Jurgen Buekers (J)

VITO, Flemish Institute for Technological Research, Unit Health, Mol, Belgium.

Jos Bessems (J)

VITO, Flemish Institute for Technological Research, Unit Health, Mol, Belgium.

Xavier Basagaña (X)

ISGlobal, Barcelona, 08003, Spain.
Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain.

Sandrine Mathy (S)

CNRS, University Grenoble Alpes, INRAe, Grenoble INP, GAEL, Grenoble, France.

Mark Nieuwenhuijsen (M)

ISGlobal, Barcelona, 08003, Spain.
Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain.

Rémy Slama (R)

Inserm, University of Grenoble Alpes, CNRS, IAB, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France. remy.slama@inserm.fr.

Classifications MeSH