Controlling viscous fingering instabilities of complex fluids.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 Jan 2024
Historique:
received: 14 03 2023
accepted: 16 01 2024
medline: 29 1 2024
pubmed: 29 1 2024
entrez: 28 1 2024
Statut: epublish

Résumé

Despite their aesthetic elegance, wavy or fingering patterns emerge when a fluid of low viscosity pushes another immiscible fluid of high viscosity in a porous medium, producing an incomplete sweep and hampering several crucial technologies. Some examples include chromatography, printing, coating flows, oil-well cementing, as well as large-scale technologies of groundwater and enhanced oil recovery. Controlling such fingering instabilities is notoriously challenging and unresolved for complex fluids of varying viscosity because the fluids' mobility contrast is often predetermined and yet the predominant drive in determining a stable, flat or unstable, wavy interface. Here we show, experimentally and theoretically, how to suppress or control the primary viscous fingering patterns of a common type of complex fluids (of shear-thinning with a low yield stress) using a radially tapered cell of linearly varying gap thickness, h(r). Experimentally, we displace a complex viscous (PAA) solution with gas under a constant flow rate (Q), varied between 0.02 and 2 slpm (standard liter per minute), in a radially converging cell with a constant gap-thickness gradient, [Formula: see text]. A stable, uniform interface emerges at low Q and in a steeper cell (i.e., greater [Formula: see text]) for the complex fluids, whereas unstable fingering pattern at high Q and smaller [Formula: see text]. Our theoretical predictions with a simplified linear stability analysis show an agreeable stability criterion with experimental data, quantitatively offering strategies to control complex fluid-fluid patterns and displacements in microfluidics and porous media.

Identifiants

pubmed: 38282007
doi: 10.1038/s41598-024-52218-w
pii: 10.1038/s41598-024-52218-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2338

Subventions

Organisme : Natural Sciences and Engineering Research Council of Canada
ID : CRC 233147
Organisme : Alberta Innovates
ID : Advance 222302054

Informations de copyright

© 2024. The Author(s).

Références

Paterson, L. Radial fingering in a Hele Shaw cell. J. Fluid Mech. 113, 513 (1981).
doi: 10.1017/S0022112081003613
Paterson, L. Fingering with miscible fluids in a Hele Shaw cell. Phys. Fluids 28, 26 (1985).
doi: 10.1063/1.865195
Saffman, P. G. Viscous fingering in Hele–Shaw cells. J. Fluid Mech. 173, 73 (1986).
doi: 10.1017/S0022112086001088
Homsy, G. M. Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271 (1987).
doi: 10.1146/annurev.fl.19.010187.001415
Chen, J. D. Radial viscous fingering patterns in Hele–Shaw cells. Exp. Fluids 5, 363 (1987).
doi: 10.1007/BF00264399
Dias, E. O. & Miranda, J. A. Control of centrifugally driven fingering in a tapered Hele–Shaw cell. Phys. Rev. E 87, 053014 (2013).
doi: 10.1103/PhysRevE.87.053014
Chevalier, C., Ben Amar, M., Bonn, D. & Lindner, A. Inertial effects on Saffman–Taylor viscous fingering. J. Fluid Mech. 552, 83 (2006).
doi: 10.1017/S0022112005008529
Rocha, F. M. & Miranda, J. A. Manipulation of the Saffman–Taylor instability: A curvature-dependent surface tension approach. Phys. Rev. E 87, 013017 (2013).
doi: 10.1103/PhysRevE.87.013017
Park, S. S. & Durian, D. J. Viscous and elastic fingering instabilities in foam. Phys. Rev. Lett. 72, 3347 (1994).
doi: 10.1103/PhysRevLett.72.3347 pubmed: 10056175
Coussot, P. Saffman–Taylor instability in yield-stress fluids. J. Fluid Mech. 380, 363 (1999).
doi: 10.1017/S002211209800370X
Fernandez, E. J., Norton, T. T., Jung, W. C. & Tsavalas, J. G. A column design for reducing viscous fingering in size exclusion chromatography. Biotechnol. Prog. 12, 480 (1996).
doi: 10.1021/bp960031r
Pitts, E. & Greiller, J. The flow of thin liquid films between rollers. J. Fluid Mech. 11, 33 (1961).
doi: 10.1017/S0022112061000846
Grillet, A. M., Lee, A. G. & Shaqfeh, E. S. Observations of ribbing instabilities in elastic fluid flows with gravity stabilization. J. Fluid Mech. 399, 49 (1999).
doi: 10.1017/S002211209900628X
Green, D. W. & Willhite, G. P. Enhanced Oil Recovery 2nd edn. (SPE International Textbook, 2018).
Cardoso, S. S. & Woods, A. W. The formation of drops through viscous instability. J. Fluid Mech. 289, 351 (1995).
doi: 10.1017/S0022112095001364
Dias, E. O., Alvarez-Lacalle, E., Carvalho, M. S. & Miranda, J. A. Minimization of viscous fluid fingering: A variational scheme for optimal flow rates. Phys. Rev. Lett. 109, 144502 (2012).
doi: 10.1103/PhysRevLett.109.144502 pubmed: 23083248
Zheng, Z., Kim, H. & Stone, H. A. Controlling viscous fingering using time-dependent strategies. Phys. Rev. Lett. 115, 174501. https://doi.org/10.1103/PhysRevLett.115.174501 (2015).
doi: 10.1103/PhysRevLett.115.174501 pubmed: 26551117
Pihler-Puzović, D., Illien, P., Heil, M. & Juel, A. Suppression of complex finger-like patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108, 074502 (2012).
doi: 10.1103/PhysRevLett.108.074502 pubmed: 22401208
Pihler-Puzović, D., Périllat, R., Russell, M., Juel, A. & Heil, M. Modelling the suppression of viscous fingering in elastic-walled Hele–Shaw cells. J. Fluid Mech. 731, 162 (2013).
doi: 10.1017/jfm.2013.375
Al-Housseiny, T. T., Christov, I. C. & Stone, H. A. Two-phase fluid displacement and interfacial instabilities under elastic membranes. Phys. Rev. Lett. 111, 034502 (2013).
doi: 10.1103/PhysRevLett.111.034502 pubmed: 23909329
Al-Housseiny, T. T., Tsai, P. A. & Stone, H. A. Control of interfacial instabilities using flow geometry. Nat. Phys. 8, 747 (2012).
doi: 10.1038/nphys2396
Al-Housseiny, T. T. & Stone, H. A. Controlling viscous fingering in tapered Hele–Shaw cells. Phys. Fluids 25, 092102 (2013).
doi: 10.1063/1.4819317
Bongrand, G. & Tsai, P. A. Manipulation of viscous fingering in a radially tapered cell geometry. Phys. Rev. E 97, 061101 (2018).
doi: 10.1103/PhysRevE.97.061101 pubmed: 30011440
Mirzadeh, M. & Bazant, M. Z. Electrokinetic control of viscous fingering. Phys. Rev. Lett. 119, 174501 (2017).
doi: 10.1103/PhysRevLett.119.174501 pubmed: 29219442
Herschel, W. H. & Bulkley, R. Konsistenzmessungen von gummi-benzollösungen. Kolloid Z. 39, 291 (1926).
doi: 10.1007/BF01432034
Maleki-Jirsaraei, N., Lindner, A., Rouhani, S. & Bonn, D. Saffman–Taylor instability in yield stress fluids. J. Phys. Condens. Matter 17, 1219 (2005).
doi: 10.1088/0953-8984/17/14/011
Eslami, A. & Taghavi, S. M. Viscous fingering regimes in elasto-visco-plastic fluids. J. Non-Newton. Fluid Mech. 243, 79 (2017).
doi: 10.1016/j.jnnfm.2017.03.007
Eslami, A. & Taghavi, S. M. Viscous fingering of yield stress fluids: The effects of wettability. J. Non-Newton. Fluid Mech. 264, 25 (2019).
doi: 10.1016/j.jnnfm.2018.12.007
Eslami, A., Basak, R. & Taghavi, S. M. Multiphase viscoplastic flows in a nonuniform Hele–Shaw cell: A fluidic device to control interfacial patterns. Ind. Eng. Chem. Res. 59, 4119 (2020).
doi: 10.1021/acs.iecr.9b06064
Kondic, L., Palffy-Muhoray, P. & Shelley, M. J. Models of non-Newtonian Hele–Shaw flow. Phys. Rev. E 54, R4536. https://doi.org/10.1103/PhysRevE.54.R4536 (1996).
doi: 10.1103/PhysRevE.54.R4536
Talon, L. & Bauer, D. On the determination of a generalized Darcy equation for yield-stress fluid in porous media using a lattice-Boltzmann TRT scheme. Eur. Phys. J. E Soft Matter 36, 139. https://doi.org/10.1140/epje/i2013-13139-3 (2013).
doi: 10.1140/epje/i2013-13139-3 pubmed: 24326905
Lindner, A., Bonn, D. & Meunier, J. Viscous fingering in a shear-thinning fluid. Phys. Fluids 12, 256 (2000).
doi: 10.1063/1.870303

Auteurs

Alban Pouplard (A)

Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 2G8, Canada.

Peichun Amy Tsai (PA)

Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 2G8, Canada. peichun.amy.tsai@ualberta.ca.

Classifications MeSH