Next generation phenotyping for diagnosis and phenotype-genotype correlations in Kabuki syndrome.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 Jan 2024
28 Jan 2024
Historique:
received:
20
12
2023
accepted:
22
01
2024
medline:
29
1
2024
pubmed:
29
1
2024
entrez:
28
1
2024
Statut:
epublish
Résumé
The field of dysmorphology has been changed by the use Artificial Intelligence (AI) and the development of Next Generation Phenotyping (NGP). The aim of this study was to propose a new NGP model for predicting KS (Kabuki Syndrome) on 2D facial photographs and distinguish KS1 (KS type 1, KMT2D-related) from KS2 (KS type 2, KDM6A-related). We included retrospectively and prospectively, from 1998 to 2023, all frontal and lateral pictures of patients with a molecular confirmation of KS. After automatic preprocessing, we extracted geometric and textural features. After incorporation of age, gender, and ethnicity, we used XGboost (eXtreme Gradient Boosting), a supervised machine learning classifier. The model was tested on an independent validation set. Finally, we compared the performances of our model with DeepGestalt (Face2Gene). The study included 1448 frontal and lateral facial photographs from 6 centers, corresponding to 634 patients (527 controls, 107 KS); 82 (78%) of KS patients had a variation in the KMT2D gene (KS1) and 23 (22%) in the KDM6A gene (KS2). We were able to distinguish KS from controls in the independent validation group with an accuracy of 95.8% (78.9-99.9%, p < 0.001) and distinguish KS1 from KS2 with an empirical Area Under the Curve (AUC) of 0.805 (0.729-0.880, p < 0.001). We report an automatic detection model for KS with high performances (AUC 0.993 and accuracy 95.8%). We were able to distinguish patients with KS1 from KS2, with an AUC of 0.805. These results outperform the current commercial AI-based solutions and expert clinicians.
Identifiants
pubmed: 38282012
doi: 10.1038/s41598-024-52691-3
pii: 10.1038/s41598-024-52691-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2330Subventions
Organisme : Agence Nationale de la Recherche
ID : ANR-10-IAHU-01
Organisme : Thailand Science Research and Innovation
ID : N42A650229
Informations de copyright
© 2024. The Author(s).
Références
Barry, K. K. et al. From genotype to phenotype—a review of Kabuki syndrome. Genes (Basel) 13, 1761 (2022).
pubmed: 36292647
doi: 10.3390/genes13101761
Niikawa, N. et al. Kabuki make-up (Niikawa-Kuroki) syndrome: A study of 62 patients. Am. J. Med. Genet. 31, 565–589 (1988).
pubmed: 3067577
doi: 10.1002/ajmg.1320310312
White, S. M. et al. Growth, behavior, and clinical findings in 27 patients with Kabuki (Niikawa-Kuroki) syndrome. Am. J. Med. Genet. A 127A, 118–127 (2004).
pubmed: 15108197
doi: 10.1002/ajmg.a.20674
Kuroki, Y., Suzuki, Y., Chyo, H., Hata, A. & Matsui, I. A new malformation syndrome of long palpebral fissures, large ears, depressed nasal tip, and skeletal anomalies associated with postnatal dwarfism and mental retardation. J. Pediatr. 99, 570–573 (1981).
pubmed: 7277097
doi: 10.1016/S0022-3476(81)80256-9
Rouxel, F. et al. Using deep-neural-network-driven facial recognition to identify distinct Kabuki syndrome 1 and 2 gestalt. Eur. J. Hum. Genet. 30, 682–686 (2022).
pubmed: 34803161
doi: 10.1038/s41431-021-00994-8
Adam, M. P. & Hudgins, L. Kabuki syndrome: A review. Clin. Genet. 67, 209–219 (2005).
pubmed: 15691356
doi: 10.1111/j.1399-0004.2004.00348.x
Bögershausen, N. et al. Mutation update for Kabuki syndrome genes KMT2D and KDM6A and further delineation of X-Linked Kabuki syndrome subtype 2. Hum. Mutat. 37, 847–864 (2016).
pubmed: 27302555
doi: 10.1002/humu.23026
Lederer, D. et al. Deletion of KDM6A, a Histone Demethylase Interacting with MLL2, in three patients with Kabuki Syndrome. Am. J. Hum. Genet. 90, 119–124 (2012).
pubmed: 22197486
pmcid: 3257878
doi: 10.1016/j.ajhg.2011.11.021
Paděrová, J. et al. Molecular genetic analysis in 14 Czech Kabuki syndrome patients is confirming the utility of phenotypic scoring. Clin. Genet. 90, 230–237 (2016).
pubmed: 26841933
doi: 10.1111/cge.12754
Banka, S. et al. Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked Kabuki syndrome (KS2). Clin. Genet. 87, 252–258 (2015).
pubmed: 24527667
doi: 10.1111/cge.12363
Bögershausen, N. & Wollnik, B. Unmasking Kabuki syndrome. Clin. Genet. 83, 201–211 (2013).
pubmed: 23131014
doi: 10.1111/cge.12051
Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010).
pubmed: 20711175
pmcid: 2930028
doi: 10.1038/ng.646
DGOS. Les maladies rares. Ministère de la Santé et de la Prévention https://sante.gouv.fr/soins-et-maladies/prises-en-charge-specialisees/maladies-rares/article/les-maladies-rares (2023).
Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358 (2019).
pubmed: 30943338
doi: 10.1056/NEJMra1814259
Choy, G. et al. Current applications and future impact of machine learning in radiology. Radiology 288, 318–328 (2018).
pubmed: 29944078
doi: 10.1148/radiol.2018171820
Novoa, R. A., Gevaert, O. & Ko, J. M. Marking the path toward artificial intelligence-based image classification in dermatology. JAMA Dermatol. 155, 1105–1106 (2019).
pubmed: 31411643
doi: 10.1001/jamadermatol.2019.1633
Loftus, T. J. et al. Artificial Intelligence and surgical decision-making. JAMA Surg. 155, 148–158 (2020).
pubmed: 31825465
pmcid: 7286802
doi: 10.1001/jamasurg.2019.4917
Gurovich, Y. et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 25, 60–64 (2019).
pubmed: 30617323
doi: 10.1038/s41591-018-0279-0
Zhang, Q. et al. Molecular and phenotypic expansion of alström syndrome in Chinese patients. Front. Genet. 13, 808919 (2022).
pubmed: 35211159
pmcid: 8861322
doi: 10.3389/fgene.2022.808919
Javitt, M. J., Vanner, E. A., Grajewski, A. L. & Chang, T. C. Evaluation of a computer-based facial dysmorphology analysis algorithm (Face2Gene) using standardized textbook photos. Eye 36, 859–861 (2022).
pubmed: 33931761
doi: 10.1038/s41433-021-01563-5
Latorre-Pellicer, A. et al. Evaluating Face2Gene as a tool to identify cornelia de lange syndrome by facial phenotypes. Int. J. Mol. Sci. 21, E1042 (2020).
doi: 10.3390/ijms21031042
Mishima, H. et al. Evaluation of Face2Gene using facial images of patients with congenital dysmorphic syndromes recruited in Japan. J. Hum. Genet. 64, 789–794 (2019).
pubmed: 31138847
doi: 10.1038/s10038-019-0619-z
Dudding-Byth, T. et al. Computer face-matching technology using two-dimensional photographs accurately matches the facial gestalt of unrelated individuals with the same syndromic form of intellectual disability. BMC Biotechnol. 17, 90 (2017).
pubmed: 29258477
pmcid: 5735520
doi: 10.1186/s12896-017-0410-1
Garcelon, N. et al. A clinician friendly data warehouse oriented toward narrative reports: Dr Warehouse. J. Biomed. Inform. 80, 52–63 (2018).
pubmed: 29501921
doi: 10.1016/j.jbi.2018.02.019
Koonce, B. ResNet 50 63–72 (Springer, 2021). https://doi.org/10.1007/978-1-4842-6168-2_6 .
Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. https://doi.org/10.48550/arXiv.1912.01703 (2019).
Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. https://doi.org/10.48550/arXiv.1412.6980 (2017).
Alabort-i-Medina, J., Antonakos, E., Booth, J., Snape, P. & Zafeiriou, S. Menpo: A comprehensive platform for parametric image alignment and visual deformable models. In Proceedings of the 22nd ACM international conference on Multimedia 679–682 (ACM, 2014). https://doi.org/10.1145/2647868.2654890 .
Hennocq, Q. et al. An automatic facial landmarking for children with rare diseases. Am. J. Med. Genet. Part A 2022, 145 (2022).
Lucas, B. & Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision (IJCAI) Vol. 81 (Springer, 1981).
landmarker.io. The Menpo Project. https://www.menpo.org/landmarkerio/ (2022).
Bartko, J. J. The intraclass correlation coefficient as a measure of reliability. Psychol. Rep. 19, 3–11 (1966).
pubmed: 5942109
doi: 10.2466/pr0.1966.19.1.3
Rohlf, F. J. & Slice, D. Extensions of the procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990).
doi: 10.2307/2992207
Baken, E. K., Collyer, M. L., Kaliontzopoulou, A. & Adams, D. C. geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 12, 2355–2363 (2021).
doi: 10.1111/2041-210X.13723
Avcı, H. & Karakaya, J. A novel medical image enhancement algorithm for breast cancer detection on mammography images using machine learning. Diagn. (Basel) 13, 348 (2023).
Anifah, L., Purnama, I. K. E., Hariadi, M. & Purnomo, M. H. Osteoarthritis classification using self organizing map based on Gabor Kernel and contrast-limited adaptive histogram equalization. Open Biomed. Eng. J. 7, 18 (2013).
pubmed: 23525188
pmcid: 3601346
doi: 10.2174/1874120701307010018
Huang, C., Li, X. & Wen, Y. AN OTSU image segmentation based on fruitfly optimization algorithm. Alexandr. Eng. J. 60, 183–188 (2021).
doi: 10.1016/j.aej.2020.06.054
Kiflie, A., Tesema Tufa, G. & Salau, A. O. Sputum smears quality inspection using an ensemble feature extraction approach. Front. Public Health 10, 1032467 (2023).
pubmed: 36761323
pmcid: 9905811
doi: 10.3389/fpubh.2022.1032467
Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973).
doi: 10.1109/TSMC.1973.4309314
Mohanaiah, P., Sathyanarayana, P. & GuruKumar, L. Image Texture Feature Extraction Using GLCM Approach Vol. 3 (Springer, 2013).
Löfstedt, T., Brynolfsson, P., Asklund, T., Nyholm, T. & Garpebring, A. Gray-level invariant Haralick texture features. PLoS One 14, e0212110 (2019).
pubmed: 30794577
pmcid: 6386443
doi: 10.1371/journal.pone.0212110
Mundt, P. et al. Periaortic adipose radiomics texture features associated with increased coronary calcium score-first results on a photon-counting-CT. BMC Med. Imaging 23, 97 (2023).
pubmed: 37495950
pmcid: 10373379
doi: 10.1186/s12880-023-01058-7
Adelsmayr, G. et al. Three dimensional computed tomography texture analysis of pulmonary lesions: Does radiomics allow differentiation between carcinoma, neuroendocrine tumor and organizing pneumonia?. Eur. J. Radiol. 165, 110931 (2023).
pubmed: 37399666
doi: 10.1016/j.ejrad.2023.110931
Peng, B. et al. Preoperative computed tomography-based tumoral radiomic features prediction for overall survival in resectable non-small cell lung cancer. Front. Oncol. 13, 1131816 (2023).
pubmed: 37207163
pmcid: 10189057
doi: 10.3389/fonc.2023.1131816
Ou, X., Pan, W. & Xiao, P. In vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM). Int. J. Pharm. 460, 28–32 (2014).
pubmed: 24188984
doi: 10.1016/j.ijpharm.2013.10.024
Muenke, M., Adeyemo, A. & Kruszka, P. An electronic atlas of human malformation syndromes in diverse populations. Genet. Med. 18, 1085–1087 (2016).
pubmed: 26938780
doi: 10.1038/gim.2016.3
Burchard, E. G. et al. The importance of race and ethnic background in biomedical research and clinical practice. N. Engl. J. Med. 348, 1170–1175 (2003).
pubmed: 12646676
doi: 10.1056/NEJMsb025007
Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016). https://doi.org/10.1145/2939672.2939785 .
Sachs, M. C. plotROC: A tool for plotting ROC curves. J. Stat. Softw. 79, 2 (2017).
pubmed: 30686944
pmcid: 6347406
doi: 10.18637/jss.v079.c02
McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. https://doi.org/10.48550/arXiv.1802.03426 (2020).
R Core Team. European Environment Agency. https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (2020).
Hughes, H. E. & Davies, S. J. Coarctation of the aorta in Kabuki syndrome. Arch. Dis. Child. 70, 512–514 (1994).
pubmed: 8048822
pmcid: 1029872
doi: 10.1136/adc.70.6.512
Digilio, M. C. et al. Congenital heart defects in molecularly proven Kabuki syndrome patients. Am. J. Med. Genet. A 173, 2912–2922 (2017).
pubmed: 28884922
doi: 10.1002/ajmg.a.38417
Cheon, C.-K. & Ko, J. M. Kabuki syndrome: Clinical and molecular characteristics. Korean J. Pediatr. 58, 317–324 (2015).
pubmed: 26512256
pmcid: 4623449
doi: 10.3345/kjp.2015.58.9.317
Yoon, J. K. et al. The strong association of left-side heart anomalies with Kabuki syndrome. Korean J. Pediatr. 58, 256–262 (2015).
pubmed: 26300940
pmcid: 4543185
doi: 10.3345/kjp.2015.58.7.256
Faundes, V. et al. Clinical delineation, sex differences, and genotype-phenotype correlation in pathogenic KDM6A variants causing X-linked Kabuki syndrome type 2. Genet. Med. 23, 1202–1210 (2021).
pubmed: 33674768
pmcid: 8257478
doi: 10.1038/s41436-021-01119-8
Yap, K. L. et al. Congenital hyperinsulinism as the presenting feature of Kabuki syndrome: Clinical and molecular characterization of 9 affected individuals. Genet. Med. 21, 233–242 (2019).
pubmed: 29907798
doi: 10.1038/s41436-018-0013-9
Gole, H., Chuk, R. & Coman, D. Persistent hyperinsulinism in Kabuki syndrome 2: Case report and literature review. Clin. Pract. 6, 848 (2016).
pubmed: 27777708
pmcid: 5067400
doi: 10.4081/cp.2016.848
Gibson, C. E. et al. Congenital hyperinsulinism in infants with turner syndrome: Possible association with monosomy X and KDM6A haploinsufficiency. Horm. Res. Paediatr. 89, 413–422 (2018).
pubmed: 29902804
doi: 10.1159/000488347
Courcet, J.-B. et al. Clinical and molecular spectrum of renal malformations in Kabuki syndrome. J. Pediatr. 163, 742–746 (2013).
pubmed: 23535010
doi: 10.1016/j.jpeds.2013.02.032
Cetinkaya, E., Misirlioğlu, E. D., Vidinlisan, S., Baydar, Z. & Ozhan, Z. R. Hypospadias in a patient with Kabuki make-up (Niikawa-Kuroki) syndrome. J. Pediatr. Endocrinol. Metab. 14, 803–805 (2001).
pubmed: 11453533
doi: 10.1515/JPEM.2001.14.6.803
Shah, S. S. et al. Insights into the genotype-phenotype relationship of ocular manifestations in Kabuki syndrome. Am. J. Med. Genet. A 191, 1325–1338 (2023).
pubmed: 36891680
doi: 10.1002/ajmg.a.63155