Next generation phenotyping for diagnosis and phenotype-genotype correlations in Kabuki syndrome.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
28 Jan 2024
Historique:
received: 20 12 2023
accepted: 22 01 2024
medline: 29 1 2024
pubmed: 29 1 2024
entrez: 28 1 2024
Statut: epublish

Résumé

The field of dysmorphology has been changed by the use Artificial Intelligence (AI) and the development of Next Generation Phenotyping (NGP). The aim of this study was to propose a new NGP model for predicting KS (Kabuki Syndrome) on 2D facial photographs and distinguish KS1 (KS type 1, KMT2D-related) from KS2 (KS type 2, KDM6A-related). We included retrospectively and prospectively, from 1998 to 2023, all frontal and lateral pictures of patients with a molecular confirmation of KS. After automatic preprocessing, we extracted geometric and textural features. After incorporation of age, gender, and ethnicity, we used XGboost (eXtreme Gradient Boosting), a supervised machine learning classifier. The model was tested on an independent validation set. Finally, we compared the performances of our model with DeepGestalt (Face2Gene). The study included 1448 frontal and lateral facial photographs from 6 centers, corresponding to 634 patients (527 controls, 107 KS); 82 (78%) of KS patients had a variation in the KMT2D gene (KS1) and 23 (22%) in the KDM6A gene (KS2). We were able to distinguish KS from controls in the independent validation group with an accuracy of 95.8% (78.9-99.9%, p < 0.001) and distinguish KS1 from KS2 with an empirical Area Under the Curve (AUC) of 0.805 (0.729-0.880, p < 0.001). We report an automatic detection model for KS with high performances (AUC 0.993 and accuracy 95.8%). We were able to distinguish patients with KS1 from KS2, with an AUC of 0.805. These results outperform the current commercial AI-based solutions and expert clinicians.

Identifiants

pubmed: 38282012
doi: 10.1038/s41598-024-52691-3
pii: 10.1038/s41598-024-52691-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2330

Subventions

Organisme : Agence Nationale de la Recherche
ID : ANR-10-IAHU-01
Organisme : Thailand Science Research and Innovation
ID : N42A650229

Informations de copyright

© 2024. The Author(s).

Références

Barry, K. K. et al. From genotype to phenotype—a review of Kabuki syndrome. Genes (Basel) 13, 1761 (2022).
pubmed: 36292647 doi: 10.3390/genes13101761
Niikawa, N. et al. Kabuki make-up (Niikawa-Kuroki) syndrome: A study of 62 patients. Am. J. Med. Genet. 31, 565–589 (1988).
pubmed: 3067577 doi: 10.1002/ajmg.1320310312
White, S. M. et al. Growth, behavior, and clinical findings in 27 patients with Kabuki (Niikawa-Kuroki) syndrome. Am. J. Med. Genet. A 127A, 118–127 (2004).
pubmed: 15108197 doi: 10.1002/ajmg.a.20674
Kuroki, Y., Suzuki, Y., Chyo, H., Hata, A. & Matsui, I. A new malformation syndrome of long palpebral fissures, large ears, depressed nasal tip, and skeletal anomalies associated with postnatal dwarfism and mental retardation. J. Pediatr. 99, 570–573 (1981).
pubmed: 7277097 doi: 10.1016/S0022-3476(81)80256-9
Rouxel, F. et al. Using deep-neural-network-driven facial recognition to identify distinct Kabuki syndrome 1 and 2 gestalt. Eur. J. Hum. Genet. 30, 682–686 (2022).
pubmed: 34803161 doi: 10.1038/s41431-021-00994-8
Adam, M. P. & Hudgins, L. Kabuki syndrome: A review. Clin. Genet. 67, 209–219 (2005).
pubmed: 15691356 doi: 10.1111/j.1399-0004.2004.00348.x
Bögershausen, N. et al. Mutation update for Kabuki syndrome genes KMT2D and KDM6A and further delineation of X-Linked Kabuki syndrome subtype 2. Hum. Mutat. 37, 847–864 (2016).
pubmed: 27302555 doi: 10.1002/humu.23026
Lederer, D. et al. Deletion of KDM6A, a Histone Demethylase Interacting with MLL2, in three patients with Kabuki Syndrome. Am. J. Hum. Genet. 90, 119–124 (2012).
pubmed: 22197486 pmcid: 3257878 doi: 10.1016/j.ajhg.2011.11.021
Paděrová, J. et al. Molecular genetic analysis in 14 Czech Kabuki syndrome patients is confirming the utility of phenotypic scoring. Clin. Genet. 90, 230–237 (2016).
pubmed: 26841933 doi: 10.1111/cge.12754
Banka, S. et al. Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked Kabuki syndrome (KS2). Clin. Genet. 87, 252–258 (2015).
pubmed: 24527667 doi: 10.1111/cge.12363
Bögershausen, N. & Wollnik, B. Unmasking Kabuki syndrome. Clin. Genet. 83, 201–211 (2013).
pubmed: 23131014 doi: 10.1111/cge.12051
Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010).
pubmed: 20711175 pmcid: 2930028 doi: 10.1038/ng.646
DGOS. Les maladies rares. Ministère de la Santé et de la Prévention https://sante.gouv.fr/soins-et-maladies/prises-en-charge-specialisees/maladies-rares/article/les-maladies-rares (2023).
Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358 (2019).
pubmed: 30943338 doi: 10.1056/NEJMra1814259
Choy, G. et al. Current applications and future impact of machine learning in radiology. Radiology 288, 318–328 (2018).
pubmed: 29944078 doi: 10.1148/radiol.2018171820
Novoa, R. A., Gevaert, O. & Ko, J. M. Marking the path toward artificial intelligence-based image classification in dermatology. JAMA Dermatol. 155, 1105–1106 (2019).
pubmed: 31411643 doi: 10.1001/jamadermatol.2019.1633
Loftus, T. J. et al. Artificial Intelligence and surgical decision-making. JAMA Surg. 155, 148–158 (2020).
pubmed: 31825465 pmcid: 7286802 doi: 10.1001/jamasurg.2019.4917
Gurovich, Y. et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 25, 60–64 (2019).
pubmed: 30617323 doi: 10.1038/s41591-018-0279-0
Zhang, Q. et al. Molecular and phenotypic expansion of alström syndrome in Chinese patients. Front. Genet. 13, 808919 (2022).
pubmed: 35211159 pmcid: 8861322 doi: 10.3389/fgene.2022.808919
Javitt, M. J., Vanner, E. A., Grajewski, A. L. & Chang, T. C. Evaluation of a computer-based facial dysmorphology analysis algorithm (Face2Gene) using standardized textbook photos. Eye 36, 859–861 (2022).
pubmed: 33931761 doi: 10.1038/s41433-021-01563-5
Latorre-Pellicer, A. et al. Evaluating Face2Gene as a tool to identify cornelia de lange syndrome by facial phenotypes. Int. J. Mol. Sci. 21, E1042 (2020).
doi: 10.3390/ijms21031042
Mishima, H. et al. Evaluation of Face2Gene using facial images of patients with congenital dysmorphic syndromes recruited in Japan. J. Hum. Genet. 64, 789–794 (2019).
pubmed: 31138847 doi: 10.1038/s10038-019-0619-z
Dudding-Byth, T. et al. Computer face-matching technology using two-dimensional photographs accurately matches the facial gestalt of unrelated individuals with the same syndromic form of intellectual disability. BMC Biotechnol. 17, 90 (2017).
pubmed: 29258477 pmcid: 5735520 doi: 10.1186/s12896-017-0410-1
Garcelon, N. et al. A clinician friendly data warehouse oriented toward narrative reports: Dr Warehouse. J. Biomed. Inform. 80, 52–63 (2018).
pubmed: 29501921 doi: 10.1016/j.jbi.2018.02.019
Koonce, B. ResNet 50 63–72 (Springer, 2021). https://doi.org/10.1007/978-1-4842-6168-2_6 .
Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. https://doi.org/10.48550/arXiv.1912.01703 (2019).
Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. https://doi.org/10.48550/arXiv.1412.6980 (2017).
Alabort-i-Medina, J., Antonakos, E., Booth, J., Snape, P. & Zafeiriou, S. Menpo: A comprehensive platform for parametric image alignment and visual deformable models. In Proceedings of the 22nd ACM international conference on Multimedia 679–682 (ACM, 2014). https://doi.org/10.1145/2647868.2654890 .
Hennocq, Q. et al. An automatic facial landmarking for children with rare diseases. Am. J. Med. Genet. Part A 2022, 145 (2022).
Lucas, B. & Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision (IJCAI) Vol. 81 (Springer, 1981).
landmarker.io. The Menpo Project. https://www.menpo.org/landmarkerio/ (2022).
Bartko, J. J. The intraclass correlation coefficient as a measure of reliability. Psychol. Rep. 19, 3–11 (1966).
pubmed: 5942109 doi: 10.2466/pr0.1966.19.1.3
Rohlf, F. J. & Slice, D. Extensions of the procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990).
doi: 10.2307/2992207
Baken, E. K., Collyer, M. L., Kaliontzopoulou, A. & Adams, D. C. geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 12, 2355–2363 (2021).
doi: 10.1111/2041-210X.13723
Avcı, H. & Karakaya, J. A novel medical image enhancement algorithm for breast cancer detection on mammography images using machine learning. Diagn. (Basel) 13, 348 (2023).
Anifah, L., Purnama, I. K. E., Hariadi, M. & Purnomo, M. H. Osteoarthritis classification using self organizing map based on Gabor Kernel and contrast-limited adaptive histogram equalization. Open Biomed. Eng. J. 7, 18 (2013).
pubmed: 23525188 pmcid: 3601346 doi: 10.2174/1874120701307010018
Huang, C., Li, X. & Wen, Y. AN OTSU image segmentation based on fruitfly optimization algorithm. Alexandr. Eng. J. 60, 183–188 (2021).
doi: 10.1016/j.aej.2020.06.054
Kiflie, A., Tesema Tufa, G. & Salau, A. O. Sputum smears quality inspection using an ensemble feature extraction approach. Front. Public Health 10, 1032467 (2023).
pubmed: 36761323 pmcid: 9905811 doi: 10.3389/fpubh.2022.1032467
Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973).
doi: 10.1109/TSMC.1973.4309314
Mohanaiah, P., Sathyanarayana, P. & GuruKumar, L. Image Texture Feature Extraction Using GLCM Approach Vol. 3 (Springer, 2013).
Löfstedt, T., Brynolfsson, P., Asklund, T., Nyholm, T. & Garpebring, A. Gray-level invariant Haralick texture features. PLoS One 14, e0212110 (2019).
pubmed: 30794577 pmcid: 6386443 doi: 10.1371/journal.pone.0212110
Mundt, P. et al. Periaortic adipose radiomics texture features associated with increased coronary calcium score-first results on a photon-counting-CT. BMC Med. Imaging 23, 97 (2023).
pubmed: 37495950 pmcid: 10373379 doi: 10.1186/s12880-023-01058-7
Adelsmayr, G. et al. Three dimensional computed tomography texture analysis of pulmonary lesions: Does radiomics allow differentiation between carcinoma, neuroendocrine tumor and organizing pneumonia?. Eur. J. Radiol. 165, 110931 (2023).
pubmed: 37399666 doi: 10.1016/j.ejrad.2023.110931
Peng, B. et al. Preoperative computed tomography-based tumoral radiomic features prediction for overall survival in resectable non-small cell lung cancer. Front. Oncol. 13, 1131816 (2023).
pubmed: 37207163 pmcid: 10189057 doi: 10.3389/fonc.2023.1131816
Ou, X., Pan, W. & Xiao, P. In vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM). Int. J. Pharm. 460, 28–32 (2014).
pubmed: 24188984 doi: 10.1016/j.ijpharm.2013.10.024
Muenke, M., Adeyemo, A. & Kruszka, P. An electronic atlas of human malformation syndromes in diverse populations. Genet. Med. 18, 1085–1087 (2016).
pubmed: 26938780 doi: 10.1038/gim.2016.3
Burchard, E. G. et al. The importance of race and ethnic background in biomedical research and clinical practice. N. Engl. J. Med. 348, 1170–1175 (2003).
pubmed: 12646676 doi: 10.1056/NEJMsb025007
Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016). https://doi.org/10.1145/2939672.2939785 .
Sachs, M. C. plotROC: A tool for plotting ROC curves. J. Stat. Softw. 79, 2 (2017).
pubmed: 30686944 pmcid: 6347406 doi: 10.18637/jss.v079.c02
McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. https://doi.org/10.48550/arXiv.1802.03426 (2020).
R Core Team. European Environment Agency. https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (2020).
Hughes, H. E. & Davies, S. J. Coarctation of the aorta in Kabuki syndrome. Arch. Dis. Child. 70, 512–514 (1994).
pubmed: 8048822 pmcid: 1029872 doi: 10.1136/adc.70.6.512
Digilio, M. C. et al. Congenital heart defects in molecularly proven Kabuki syndrome patients. Am. J. Med. Genet. A 173, 2912–2922 (2017).
pubmed: 28884922 doi: 10.1002/ajmg.a.38417
Cheon, C.-K. & Ko, J. M. Kabuki syndrome: Clinical and molecular characteristics. Korean J. Pediatr. 58, 317–324 (2015).
pubmed: 26512256 pmcid: 4623449 doi: 10.3345/kjp.2015.58.9.317
Yoon, J. K. et al. The strong association of left-side heart anomalies with Kabuki syndrome. Korean J. Pediatr. 58, 256–262 (2015).
pubmed: 26300940 pmcid: 4543185 doi: 10.3345/kjp.2015.58.7.256
Faundes, V. et al. Clinical delineation, sex differences, and genotype-phenotype correlation in pathogenic KDM6A variants causing X-linked Kabuki syndrome type 2. Genet. Med. 23, 1202–1210 (2021).
pubmed: 33674768 pmcid: 8257478 doi: 10.1038/s41436-021-01119-8
Yap, K. L. et al. Congenital hyperinsulinism as the presenting feature of Kabuki syndrome: Clinical and molecular characterization of 9 affected individuals. Genet. Med. 21, 233–242 (2019).
pubmed: 29907798 doi: 10.1038/s41436-018-0013-9
Gole, H., Chuk, R. & Coman, D. Persistent hyperinsulinism in Kabuki syndrome 2: Case report and literature review. Clin. Pract. 6, 848 (2016).
pubmed: 27777708 pmcid: 5067400 doi: 10.4081/cp.2016.848
Gibson, C. E. et al. Congenital hyperinsulinism in infants with turner syndrome: Possible association with monosomy X and KDM6A haploinsufficiency. Horm. Res. Paediatr. 89, 413–422 (2018).
pubmed: 29902804 doi: 10.1159/000488347
Courcet, J.-B. et al. Clinical and molecular spectrum of renal malformations in Kabuki syndrome. J. Pediatr. 163, 742–746 (2013).
pubmed: 23535010 doi: 10.1016/j.jpeds.2013.02.032
Cetinkaya, E., Misirlioğlu, E. D., Vidinlisan, S., Baydar, Z. & Ozhan, Z. R. Hypospadias in a patient with Kabuki make-up (Niikawa-Kuroki) syndrome. J. Pediatr. Endocrinol. Metab. 14, 803–805 (2001).
pubmed: 11453533 doi: 10.1515/JPEM.2001.14.6.803
Shah, S. S. et al. Insights into the genotype-phenotype relationship of ocular manifestations in Kabuki syndrome. Am. J. Med. Genet. A 191, 1325–1338 (2023).
pubmed: 36891680 doi: 10.1002/ajmg.a.63155

Auteurs

Quentin Hennocq (Q)

Imagine Institute, INSERM UMR1163, 75015, Paris, France. quentin.hennocq@aphp.fr.
Service de chirurgie maxillo-faciale et chirurgie plastique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France. quentin.hennocq@aphp.fr.
Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Paris, France. quentin.hennocq@aphp.fr.
Faculté de Médecine, Université de Paris Cité, 75015, Paris, France. quentin.hennocq@aphp.fr.
Laboratoire 'Forme et Croissance du Crâne', Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France. quentin.hennocq@aphp.fr.
Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015, Paris, France. quentin.hennocq@aphp.fr.

Marjolaine Willems (M)

Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France.

Jeanne Amiel (J)

Imagine Institute, INSERM UMR1163, 75015, Paris, France.
Faculté de Médecine, Université de Paris Cité, 75015, Paris, France.
Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.

Stéphanie Arpin (S)

Service de Génétique, CHU Tours, UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.

Tania Attie-Bitach (T)

Imagine Institute, INSERM UMR1163, 75015, Paris, France.
Faculté de Médecine, Université de Paris Cité, 75015, Paris, France.
Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.

Thomas Bongibault (T)

Imagine Institute, INSERM UMR1163, 75015, Paris, France.
Laboratoire 'Forme et Croissance du Crâne', Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France.

Thomas Bouygues (T)

Imagine Institute, INSERM UMR1163, 75015, Paris, France.
Laboratoire 'Forme et Croissance du Crâne', Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France.

Valérie Cormier-Daire (V)

Imagine Institute, INSERM UMR1163, 75015, Paris, France.
Faculté de Médecine, Université de Paris Cité, 75015, Paris, France.
Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.

Pierre Corre (P)

Nantes Université, CHU Nantes, Service de chirurgie maxillo-faciale et stomatologie, 44000, Nantes, France.
Nantes Université, Oniris, UnivAngers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000, Nantes, France.

Klaus Dieterich (K)

Univ. Grenoble Alpes, Inserm, U1209, IAB, CHU Grenoble Alpes, 38000, Grenoble, France.

Maxime Douillet (M)

Imagine Institute, INSERM UMR1163, 75015, Paris, France.

Jean Feydy (J)

HeKA team, INRIA, 75012, Paris, France.

Eva Galliani (E)

Service de chirurgie maxillo-faciale et chirurgie plastique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Paris, France.
Faculté de Médecine, Université de Paris Cité, 75015, Paris, France.

Fabienne Giuliano (F)

MEDISYN Genetics, Lausanne, Switzerland.

Stanislas Lyonnet (S)

Imagine Institute, INSERM UMR1163, 75015, Paris, France.
Faculté de Médecine, Université de Paris Cité, 75015, Paris, France.
Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.

Arnaud Picard (A)

Service de chirurgie maxillo-faciale et chirurgie plastique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Paris, France.
Faculté de Médecine, Université de Paris Cité, 75015, Paris, France.

Thantrira Porntaveetus (T)

Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.

Marlène Rio (M)

Imagine Institute, INSERM UMR1163, 75015, Paris, France.
Faculté de Médecine, Université de Paris Cité, 75015, Paris, France.
Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.

Flavien Rouxel (F)

Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France.

Vorasuk Shotelersuk (V)

Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

Annick Toutain (A)

Service de Génétique, CHU Tours, UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.

Kevin Yauy (K)

Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France.

David Geneviève (D)

Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France.

Roman H Khonsari (RH)

Imagine Institute, INSERM UMR1163, 75015, Paris, France.
Service de chirurgie maxillo-faciale et chirurgie plastique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Paris, France.
Faculté de Médecine, Université de Paris Cité, 75015, Paris, France.
Laboratoire 'Forme et Croissance du Crâne', Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France.

Nicolas Garcelon (N)

Imagine Institute, INSERM UMR1163, 75015, Paris, France.

Classifications MeSH