Effects of Ureaplasma parvum infection in the exosome biogenesis-related proteins in ectocervical epithelial cells.

ectocervix extracellular vesicles infection multiple banded antigen mycoplasma proteomics

Journal

American journal of reproductive immunology (New York, N.Y. : 1989)
ISSN: 1600-0897
Titre abrégé: Am J Reprod Immunol
Pays: Denmark
ID NLM: 8912860

Informations de publication

Date de publication:
Jan 2024
Historique:
revised: 16 11 2023
received: 15 09 2023
accepted: 25 11 2023
medline: 29 1 2024
pubmed: 29 1 2024
entrez: 29 1 2024
Statut: ppublish

Résumé

Ureaplasma parvum is a mycoplasma commonly associated with female reproductive pathologies, such as preterm birth and infertility. It can survive intracellularly and utilize exosomes to propagate infection and its virulence factors. This study explored the differential protein composition of exosomes derived from normal and U. parvum-infected cells. We also investigated the impact of U. parvum on exosome biogenesis in ectocervical epithelial cells. Ectocervical epithelial (ECTO) cells were infected with U. parvum, and immunocytochemical staining was performed using U. parvum-specific marker multiple banded antigen (mba) and exosome marker CD9. NanoLC-MS/MS analysis was conducted to identify differentially expressed proteins in exosomes. Ingenuity Pathway Analysis (IPA) was performed to identify affected canonical pathways and biological functions associated with the protein cargo of exosomes. Western blot analysis of ECTO cells validated the proteomic findings in ECTO cells. U. parvum exhibited colonization of ECTO cells and colocalization with CD9-positive intraluminal vesicles. Proteomic analysis revealed decreased protein abundance and distinct protein profiles in exosomes derived from U. parvum-infected ECTO cells. Differentially expressed proteins were associated with clathrin-mediated endocytosis and various signaling pathways indicative of infection, inflammation, and cell death processes. Additionally, U. parvum infection altered proteins involved in exosome biogenesis. In ECTO cells, U. parvum infection significantly decreased clathrin, ALIX, CD9, and CD63 and significantly increased TSG101, Rab5, Rab35, and UGCG. These findings contribute to our understanding of the infection mechanism and shed light on the importance of exosome-mediated communication in the pathophysiology of diseases affecting the cervix, such as cervicitis and preterm birth.

Identifiants

pubmed: 38282606
doi: 10.1111/aji.13803
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13803

Subventions

Organisme : NIH/NICHD
ID : 1R01HD100729

Informations de copyright

© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Wu HN, Nakura Y, Motooka D, et al. Complete genome sequence of Ureaplasma parvum serovar 3 strain SV3F4, isolated in Japan. Genome Announc. 2014;2:14-15.
Paralanov V, Lu J, Duffy LB, et al. Comparative genome analysis of 19 Ureaplasma urealyticum and Ureaplasma parvum strains. BMC Microbiol. 2012;12.
Shepard MC, Lunceford CD, Ford DK, et al. Ureaplasma urealyticum gen. no., sp. nov.: proposed nomenclature for the human T (T-Strain) mycoplasmas. Int J Syst Bacteriol. 1974;24:160-171.
Rumyantseva T, Khayrullina G, Guschin A, Donders G. Prevalence of Ureaplasma spp. and Mycoplasma hominis in healthy women and patients with flora alterations. Diagn Microbiol Infect Dis. 2019;93:227-231.
Leli C, Mencacci A, Latino MA, et al. Prevalence of cervical colonization by Ureaplasma parvum, Ureaplasma urealyticum, Mycoplasma hominis and Mycoplasma genitalium in childbearing age women by a commercially available multiplex real-time PCR: an Italian observational multicentre study. J Microbiol Immunol Infect. 2018;51:220-225.
Hong X, Zhao J, Ding X, Yin J, Ma X, Wang B. A preliminary study on the associations between Ureaplasma, mycoplasma and the vaginal microbiome. Med Microecol. 2021;8:100041.
Noda-Nicolau NM, Tantengco OAG, Polettini J, et al. Genital mycoplasmas and biomarkers of inflammation and their association with spontaneous preterm birth and preterm prelabor rupture of membranes: a systematic review and meta-analysis. Front Microbiol. 2022;13.
Taylor-Robinson D. The role of mycoplasmas in pregnancy outcome. Best Pract Res Clin Obstet Gynaecol. 2007;21:425-438.
Rowlands S, Danielewski JA, Tabrizi SN, Walker SP, Garland SM. Microbial invasion of the amniotic cavity in midtrimester pregnancies using molecular microbiology. Am J Obstet Gynecol. 2017;217:71.e1-71.e5.
Oh KJ, Lee SE, Jung H, Kim G, Romero R, Yoon BH. Detection of ureaplasmas by the polymerase chain reaction in the amniotic fluid of patients with cervical insufficiency. J Perinat Med. 2010;38:261-268.
Urszula K, Joanna E, Marek E, Beata M, Magdalena SB. Colonization of the lower urogenital tract with Ureaplasma parvum can cause asymptomatic infection of the upper reproductive system in women: a preliminary study. Arch Gynecol Obstet. 2014;289:1129-1134.
Tantengco OAG, de Castro Silva M, Velayo CL. The Role of genital Mycoplasma Infection in female infertility: a systematic Review and meta-analysis. Am J Reprod Immunol. 2021:e13390.
Katz B, Schelonka RL, Waites KB. Mycoplasmas and Ureaplasmas as neonatal pathogens. Clin Microbiol Rev. 2005;18:757-789.
Olomu IN, Hecht JL, Onderdonk AO, Allred EN, Leviton A. Perinatal correlates of Ureaplasma urealyticum in placenta parenchyma of singleton pregnancies that end before 28 weeks of gestation. Pediatrics. 2009;123:1329-1336.
Viscardi RM. Ureaplasma species: role in diseases of prematurity. Clin Perinatol. 2010;37:393-409.
Ljubin-Sternak S. Genital mycoplasmas. Diagn Pathog Sex Transm Infect. 2018:233-255.
Sweeney EL, Kallapur SG, Meawad S, et al. Ureaplasma species multiple banded antigen (MBA) variation is associated with the severity of inflammation in vivo and in vitro in human placentae. Front Cell Infect Microbiol. 2017;7:1-12.
Sweeney EL, Dando SJ, Kallapur SG, Knox L. The human Ureaplasma species as causative agents of chorioamnionitis. Clin Microbiol Rev. 2017;30:349-379.
Xiao L, Crabb DM, Dai Y, Chen Y, Waites KB, Atkinson TP. Suppression of antimicrobial peptide expression by ureaplasma species. Infect Immun. 2014;82:1657-1665.
Guo F, Tang Y, Xiang J, et al. Advances in immune escape mechanism of Ureaplasma species: review. J Cell Mol Immunol. 2020;36:755-759. Xi bao yu fen zi mian yi xue za zhi = Chinese.
Nishiumi F, Ogawa M, Nakura Y, et al. Intracellular fate of Ureaplasma parvum entrapped by host cellular autophagy. Microbiologyopen. 2017;6:1-15.
Noda-Nicolau NM, Polettini J, Peltier MR, da Silva MG, Menon R. Combinations and loads of bacteria affect the cytokine production by fetal membranes: an in vitro study. Am J Reprod Immunol. 2016;76:504-511.
Tantengco OAG, Kechichian T, Vincent KL, Pyles RB, Medina PMB, Menon R. Inflammatory response elicited by Ureaplasma parvum colonization in human cervical epithelial, stromal, and immune cells. Reproduction. 2021;163:1-10.
Senthamaraikannan P, Presicce P, Rueda CM, et al. Intra-amniotic Ureaplasma parvum-induced maternal and fetal inflammation and immune responses in rhesus macaques. J Infect Dis. 2016;214:1597-1604.
Pavlidis I, Spiller OB, Sammut Demarco G, et al. Cervical epithelial damage promotes Ureaplasma parvum ascending infection, intrauterine inflammation and preterm birth induction in mice. Nat Commun. 2020;11:1-12.
Tantengco OAG, Richardson LS, Radnaa E, et al. Exosomes from Ureaplasma parvum-infected ectocervical epithelial cells promote feto-maternal interface inflammation but are insufficient to cause preterm delivery. Front Cell Dev Biol. 2022;10:931609.
Ona S, Molina RL, Diouf K. Mycoplasma genitalium: an overlooked sexually transmitted pathogen in women? Infect Dis Obstet Gynecol. 2016;2016:4513089.
Vink J, Mourad M. The pathophysiology of human premature cervical remodeling resulting in spontaneous preterm birth: where are we now? Semin Perinatol. 2017;41:427-437.
Vink J, Myers K. Cervical alterations in pregnancy. Best Pract Res Clin Obstet Gynaecol. 2018;52:88-102.
Hein M, Valore EV, Helmig RB, Uldbjerg N, Ganz T. Antimicrobial factors in the cervical mucus plug. Am J Obstet Gynecol. 2002;187:137-144.
Tantengco OAG, Menon R. Breaking down the barrier: the role of cervical infection and inflammation in preterm birth. Front Glob Women's. Heal. 2022;18:777643.
Nallasamy S, Mahendroo M. Distinct roles of cervical epithelia and stroma in pregnancy and parturition. Semin Reprod Med. 2017;35:190-199.
Yang C, Chalasani G, Ng Y-H, Robbins PD. Exosomes released from Mycoplasma infected tumor cells activate inhibitory B cells. PLoS One. 2012;7:e36138.
Herbst-Kralovetz MM, Quayle AJ, Ficarra M, et al. Quantification and comparison of toll-like receptor expression and responsiveness in primary and immortalized human female lower genital tract epithelia. Am J Reprod Immunol. 2008;59:212-224.
Tantengco OAG, Richardson LS, Menon R. Effects of a gestational level of estradiol on cellular transition, migration, and inflammation in cervical epithelial and stromal cells. Am J Reprod Immunol. 2021;85:e13370.
Tantengco OAG, Vink J, Medina PMB, Menon R. Oxidative stress promotes cellular damages in the cervix: implications for normal and pathologic cervical function in human pregnancy. Biol Reprod. 2021;105:204-216.
Namba F, Hasegawa T, Nakayama M, et al. Placental features of chorioamnionitis colonized with Ureaplasma species in preterm delivery. Pediatr Res. 2010;67:166-172.
Monsivais LA, Sheller-Miller S, Russell W, et al. Fetal membrane extracellular vesicle profiling reveals distinct pathways induced by infection and inflammation in vitro. Am J Reprod Immunol. 2020;84:e13282.
Sheller-Miller S, Urrabaz-Garza R, Saade G, Menon R. Damage-Associated molecular pattern markers HMGB1 and cell-Free fetal telomere fragments in oxidative-Stressed amnion epithelial cell-Derived exosomes. J Reprod Immunol. 2017;123:3-11.
Tantengco OAG, Radnaa E, Shahin H, Kechichian T, Menon R. Cross talk: trafficking and functional impact of maternal exosomes at the feto-maternal interface under normal and pathologic states. Biol Reprod. 2021;105:1562-1576.
Sheller-Miller S, Trivedi J, Yellon SM, Menon R. Exosomes cause preterm birth in mice: evidence for paracrine signaling in pregnancy. Sci Rep. 2019;9:1-18.
MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9-26.
Trejo-Solis C, Escamilla-Ramirez A, Jimenez-Farfan D, Castillo-Rodriguez RA, Flores-Najera A, Cruz-Salgado A. Crosstalk of the Wnt/β-catenin signaling pathway in the induction of. Apopt Cancer Cells Pharm (Basel). 2021;14.
Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases. 2018;9:95-106.
Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol. 2018;74:66-77.
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75:193-208.
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319:1244-1247.
Dixon CL, Sheller-Miller S, Saade GR, et al. Amniotic fluid exosome proteomic profile exhibits unique pathways of term and preterm labor. Endocrinology. 2018;159:2229-2240.
Shepherd MC, Radnaa E, Tantengco OA, et al. Extracellular vesicles from maternal uterine cells exposed to risk factors cause fetal inflammatory response. Cell Commun Signal. 2021;19:100.
Menon R, Dixon CL, Cayne S, Radnaa E, Salomon C, Sheller-Miller S. Differences in cord blood extracellular vesicle cargo in preterm and term births. Am J Reprod Immunol. 2022;87:e13521.
Fan X, Zhao Z, Wang D, Xiao J. Glycogen synthase kinase-3 as a key regulator of cognitive function. Acta Biochim Biophys Sin (Shanghai). 2020;52:219-230.
Wang L, Li J, Di L-J. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev. 2022;42:946-982.
Lavu N, Richardson L, Bonney E, Menon R. Glycogen synthase kinase (GSK) 3 in pregnancy and parturition: a systematic review of literature. J Matern Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2020;33:1946-1957.
Duda P, Akula SM, Abrams SL, et al. Targeting GSK3 and associated signaling pathways involved in cancer. Cells. 2020;9.
Mancinelli R, Carpino G, Petrungaro S, et al. Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxid Med Cell Longev. 2017;2017:4629495.
Silwedel C, Fehrholz M, Speer CP, Ruf KC, Manig S, Glaser K. Differential modulation of pulmonary caspases: is this the key to Ureaplasma-driven chronic inflammation? PLoS One. 2019;14:e0216569.
Amorim AT, Marques LM, Santos AMOG, et al. Apoptosis in HEp-2 cells infected with Ureaplasma diversum. Biol Res. 2014;47:38.
Nishiumi F, Kawai Y, Nakura Y, et al. Blockade of endoplasmic reticulum stress-induced cell death by Ureaplasma parvum vacuolating factor. Cell Microbiol. 2021;23:e13392.

Auteurs

Ourlad Alzeus G Tantengco (OAG)

Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.
Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines.
Department of Biology, College of Science, De La Salle University, Manila, Philippines.

Ramkumar Menon (R)

Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.

Classifications MeSH