Biological sex-related differences in the postprandial triglyceride response to intermittent hypoxaemia in young adults: a randomized crossover trial.
hypoxia
lipid metabolism
obstructive sleep apnoea
triglyceride-rich lipoproteins
Journal
The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262
Informations de publication
Date de publication:
29 Jan 2024
29 Jan 2024
Historique:
received:
01
08
2023
accepted:
10
01
2024
medline:
29
1
2024
pubmed:
29
1
2024
entrez:
29
1
2024
Statut:
aheadofprint
Résumé
Obstructive sleep apnoea is characterized by chronic intermittent hypoxaemia and is independently associated with an increased risk of metabolic comorbidities (e.g. type II diabetes and ischaemic heart disease). These comorbidities could be attributable to hypoxaemia-induced alterations in blood lipid profiles. However, it remains unclear whether intermittent hypoxaemia alters triglyceridaemia differently between biological sexes. Therefore, we used a randomized crossover design to examine whether 6 h of moderate intermittent hypoxaemia (15 hypoxaemic cycles/h, 85% oxyhaemoglobin saturation) alters plasma triglyceride levels differently between men and women after a high-fat meal. Relative to men, women displayed lower levels of total triglycerides, in addition to denser triglyceride-rich lipoprotein triglycerides (TRL-TG; mainly very low-density lipoprotein triglycerides and chylomicron remnant triglycerides) and buoyant TRL-TG (mainly chylomicron triglycerides) during normoxia (ambient air) and intermittent hypoxaemia (sex × time: all P ≤ 0.008). Intermittent hypoxaemia led to higher triglyceride levels (condition: all P ≤ 0.016); however, this effect was observed only in men (sex × condition: all P ≤ 0.002). Compared with normoxia, glucose levels were higher in men and lower in women during intermittent hypoxaemia (sex × condition: P < 0.001). The different postprandial responses between biological sexes occurred despite similar reductions in mean oxyhaemoglobin saturation and similar elevations in insulin levels, non-esterified fatty acid levels and mean heart rate (sex × condition: all P ≥ 0.185). These results support growing evidence showing that intermittent hypoxaemia impacts men and women differently, and they might help to explain biological sex-related discrepancies in the rate of certain comorbidities associated with intermittent hypoxaemia. KEY POINTS: Intermittent hypoxaemia is a key characteristic of obstructive sleep apnoea and alters lipid metabolism in multiple tissues, resulting in increased circulating triglyceride levels, an important risk factor for cardiometabolic diseases. Circulating triglyceride levels are regulated differently between biological sexes, with women typically displaying much lower fasting and postprandial triglyceride levels than men, partly explaining why women of all ages experience lower mortality rates from cardiometabolic diseases. In this study, healthy young men and women consumed a high-fat meal and were then exposed to 6 h of intermittent hypoxaemia or ambient air. We show that postprandial triglyceride levels are significantly lower in women compared with men and that intermittent hypoxaemia leads to higher postprandial triglyceride levels in men only. These results might help us to understand better why women living with obstructive sleep apnoea experience lower rates of cardiometabolic diseases (e.g. type II diabetes and ischaemic heart disease) than men living with obstructive sleep apnoea.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Natural Sciences and Engineering Research Council of Canada (NSERC)
ID : RGPIN-2019-04438
Organisme : Association Médicale Universitaire de l'Hôpital Montfort
ID : 2019-A03 Sleep Apnea
Informations de copyright
© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Références
Andreoli, A., Scalzo, G., Masala, S., Tarantino, U., & Guglielmi, G. (2009). Body composition assessment by dual-energy X-ray absorptiometry (DXA). La Radiologia Medica, 114(2), 286-300.
Benjafield, A. V., Ayas, N. T., Eastwood, P. R., Heinzer, R., Ip, M. S. M., Morrell, M. J., Nunez, C. M., Patel, S. R., Penzel, T., Pépin, J.-L., Peppard, P. E., Sinha, S., Tufik, S., Valentine, K., & Malhotra, A. (2019). Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. The Lancet Respiratory Medicine, 7(8), 687-698.
Botek, M., Krejčí, J., & McKune, A. (2018). Sex differences in autonomic cardiac control and oxygen saturation response to short-term normobaric hypoxia and following recovery: Effect of aerobic fitness. Frontiers in Endocrinology, 9, 697.
Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193-213.
Carlson, L. A., & Ericsson, M. (1975). Quantitative and qualitative serum lipoprotein analysis: Part 1. Studies in healthy men and women. Atherosclerosis, 21(3), 417-433.
Chang, E., Varghese, M., & Singer, K. (2018). Gender and sex differences in adipose tissue. Current Diabetes Reports, 18(9), 69.
Chopra, S., Rathore, A., Younas, H., Pham, L. V., Gu, C., Beselman, A., Kim, I.-Y., Wolfe, R. R., Perin, J., Polotsky, V. Y., & Jun, J. C. (2017). Obstructive sleep apnea dynamically increases nocturnal plasma free fatty acids, glucose, and cortisol during sleep. The Journal of Clinical Endocrinology & Metabolism, 102(9), 3172-3181.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd edn.). Routledge.
Compher, C., Frankenfield, D., Keim, N., & Roth-Yousey, L. (2006). Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. Journal of the American Dietetic Association, 106(6), 881-903.
Conde, S. V., Polotsky, V. Y., Joseph, V., & Kinkead, R. (2023). On the origins of sleep disordered breathing, cardiorespiratory and metabolic dysfunction: Which came first, the chicken or the egg? The Journal of Physiology, 601(24), 5509-5525.
Costalat, G., Lemaitre, F., Tobin, B., & Renshaw, G. (2018). Intermittent hypoxia revisited: A promising non-pharmaceutical strategy to reduce cardio-metabolic risk factors? Sleep & Breathing = Schlaf & Atmung, 22(1), 267-271.
Couillard, C., Bergeron, N., Prud'homme, D., Bergeron, J., Tremblay, A., Bouchard, C., Mauriège, P., & Després, J.-P. (1999). Gender difference in postprandial lipemia: Importance of visceral adipose tissue accumulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(10), 2448-2455.
Dempsey, J. A., Veasey, S. C., Morgan, B. J., & O'Donnell, C. P. (2010). Pathophysiology of sleep apnea. Physiological Reviews, 90(1), 47-112.
Dixon, M. D., Koemel, N. A., Sciarrillo, C. M., Lucas, E. A., Jenkins, N. D. M., & Emerson, S. R. (2021). The reliability of an abbreviated fat tolerance test: A comparison to the oral glucose tolerance test. Clinical Nutrition ESPEN, 43, 428-435.
Dong, J.-Y., Zhang, Y.-H., & Qin, L.-Q. (2013). Obstructive sleep apnea and cardiovascular risk: Meta-analysis of prospective cohort studies. Atherosclerosis, 229(2), 489-495.
Drager, L. F., Li, J., Shin, M.-K., Reinke, C., Aggarwal, N. R., Jun, J. C., Bevans-Fonti, S., Sztalryd, C., O'Byrne, S. M., Kroupa, O., Olivecrona, G., Blaner, W. S., & Polotsky, V. Y. (2012). Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea. European Heart Journal, 33(6), 783-790.
Drager, L. F., Polotsky, V. Y., & Lorenzi-Filho, G. (2011). Obstructive sleep apnea: An emerging risk factor for atherosclerosis. Chest, 140(2), 534-542.
Drager, L. F., Tavoni, T. M., Silva, V. M., Santos, R. D., Pedrosa, R. P., Bortolotto, L. A., Vinagre, C. G., Polotsky, V. Y., Lorenzi-Filho, G., & Maranhao, R. C. (2018). Obstructive sleep apnea and effects of continuous positive airway pressure on triglyceride-rich lipoprotein metabolism. Journal of Lipid Research, 59(6), 1027-1033.
Drager, L. F., Togeiro, S. M., Polotsky, V. Y., & Lorenzi-Filho, G. (2013). Obstructive sleep apnea: A cardiometabolic risk in obesity and the metabolic syndrome. Journal of the American College of Cardiology, 62(7), 569-576.
Drager, L. F., Yao, Q., Hernandez, K. L., Shin, M.-K., Bevans-Fonti, S., Gay, J., Sussan, T. E., Jun, J. C., Myers, A. C., Olivecrona, G., Schwartz, A. R., Halberg, N., Scherer, P. E., Semenza, G. L., Powell, D. R., & Polotsky, V. Y. (2013). Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4. American Journal of Respiratory and Critical Care Medicine, 188(2), 240-248.
Dubois, C., Beaumier, G., Juhel, C., Armand, M., Portugal, H., Pauli, A. M., Borel, P., Latgé, C., & Lairon, D. (1998). Effects of graded amounts (0-50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. The American Journal of Clinical Nutrition, 67(1), 31-38.
Fisher, R. M., Coppack, S. W., Humphreys, S. M., Gibbons, G. F., & Frayn, K. N. (1995). Human triacylglycerol-rich lipoprotein subfractions as substrates for lipoprotein lipase. Clinica Chimica Acta, 236(1), 7-17.
Gabryelska, A., Sochal, M., Turkiewicz, S., & Białasiewicz, P. (2020). Relationship between HIF-1 and circadian clock proteins in obstructive sleep apnea patients-preliminary study. Journal of Clinical Medicine, 9(5), 1599.
Gabryelska, A., Stawski, R., Sochal, M., Szmyd, B., & Białasiewicz, P. (2020). Influence of one-night CPAP therapy on the changes of HIF-1α protein in OSA patients: A pilot study. Journal of Sleep Research, 29(4), e12995.
Gabryelska, A., Szmyd, B., Szemraj, J., Stawski, R., Sochal, M., & Bia łasiewicz, P. (2020). Patients with obstructive sleep apnea present with chronic upregulation of serum HIF-1α protein. Journal of Clinical Sleep Medicine, 16(10), 1761-1768.
Geerling, J. J., Boon, M. R., Kooijman, S., Parlevliet, E. T., Havekes, L. M., Romijn, J. A., Meurs, I. M., & Rensen, P. C. N. (2014). Sympathetic nervous system control of triglyceride metabolism: Novel concepts derived from recent studies. Journal of Lipid Research, 55(2), 180-189.
Gill, J. M., Malkova, D., & Hardman, A. E. (2005). Reproducibility of an oral fat tolerance test is influenced by phase of menstrual cycle. Hormone and Metabolic Research, 37(5), 336-341.
Goossens, G. H., Jocken, J. W. E., & Blaak, E. E. (2021). Sexual dimorphism in cardiometabolic health: The role of adipose tissue, muscle and liver. Nature Reviews Endocrinology, 17(1), 47-66.
Harris, J. A., & Benedict, F. G. (1918). A biometric study of human basal metabolism. Proceedings of the National Academy of Sciences, 4(12), 370-373.
Horton, T. J., Commerford, S. R., Pagliassotti, M. J., & Bessesen, D. H. (2002). Postprandial leg uptake of triglyceride is greater in women than in men. American Journal of Physiology-Endocrinology and Metabolism, 283(6), E1192-E1202.
Hudgel, D. W. (2016). Sleep apnea severity classification - revisited. Sleep, 39(5), 1165-1166.
Iesato, K., Tatsumi, K., Saibara, T., Nakamura, A., Terada, J., Tada, Y., Sakao, S., Tanabe, N., Takiguchi, Y., & Kuriyama, T. (2007). Decreased lipoprotein lipase in obstructive sleep apnea syndrome. Circulation Journal, 71(8), 1293-1298.
Jensen, M. D. (1995). Gender differences in regional fatty acid metabolism before and after meal ingestion. Journal of Clinical Investigation, 96(5), 2297-2303.
Kenward, M. G., & Roger, J. H. (2010). The use of baseline covariates in crossover studies. Biostatistics, 11(1), 1-17.
Kim, A. M., Tingen, C. M., & Woodruff, T. K. (2010). Sex bias in trials and treatment must end. Nature, 465(7299), 688-689.
Knopp, J. L., Holder-Pearson, L., & Chase, J. G. (2019). Insulin units and conversion factors: A story of truth, boots, and faster half-truths. Journal of Diabetes Science and Technology, 13(3), 597-600.
Le Fur, C., Romon, M., Lebel, P., Devos, P., Lancry, A., Guédon-Moreau, L., Fruchart, J.-C., & Dallongeville, J. (1999). Influence of mental stress and circadian cycle on postprandial lipemia. The American Journal of Clinical Nutrition, 70(2), 213-220.
Lempesis, I. G., van Meijel, R. L. J., Manolopoulos, K. N., & Goossens, G. H. (2020). Oxygenation of adipose tissue: A human perspective. Acta Physiologica, 228(1), e13298.
Leuenberger, U. A., Brubaker, D., Quraishi, S., Hogeman, C. S., Imadojemu, V. A., & Gray, K. S. (2005). Effects of intermittent hypoxia on sympathetic activity and blood pressure in humans. Autonomic Neuroscience, 121(1-2), 87-93.
Li, J., Bosch-Marce, M., Nanayakkara, A., Savransky, V., Fried, S. K., Semenza, G. L., & Polotsky, V. Y. (2006). Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1alpha. Physiological Genomics, 25(3), 450-457.
Li, J., Nanayakkara, A., Jun, J., Savransky, V., & Polotsky, V. Y. (2007). Effect of deficiency in SREBP cleavage-activating protein on lipid metabolism during intermittent hypoxia. Physiological Genomics, 31(2), 273-280.
Li, J., Thorne, L. N., Punjabi, N. M., Sun, C. K., Schwartz, A. R., Smith, P. L., Marino, R. L., Rodriguez, A., Hubbard, W. C., O'Donnell, C. P., & Polotsky, V. Y. (2005). Intermittent hypoxia induces hyperlipidemia in lean mice. Circulation Research, 97(7), 698-706.
Liu, A., Cardell, J., Ariel, D., Lamendola, C., Abbasi, F., Kim, S. H., Holmes, T. H., Tomasso, V., Mojaddidi, H., Grove, K., Kushida, C. A., & Reaven, G. M. (2015). Abnormalities of lipoprotein concentrations in obstructive sleep apnea are related to insulin resistance. Sleep, 38(5), 793-799.
Louis, M., & Punjabi, N. M. (2009). Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. Journal of Applied Physiology, 106(5), 1538-1544.
Magkos, F., Patterson, B. W., Mohammed, B. S., Klein, S., & Mittendorfer, B. (2007). Women produce fewer but triglyceride-richer very low-density lipoproteins than men. The Journal of Clinical Endocrinology & Metabolism, 92(4), 1311-1318.
Mahat, B., Chassé, É., Lindon, C., Mauger, J.-F., & Imbeault, P. (2018). No effect of acute normobaric hypoxia on plasma triglyceride levels in fasting healthy men. Applied Physiology, Nutrition, and Metabolism, 43(7), 727-732.
Mahat, B., Chassé, É., Mauger, J.-F., & Imbeault, P. (2016). Effects of acute hypoxia on human adipose tissue lipoprotein lipase activity and lipolysis. Journal of Translational Medicine, 14(1), 212.
Masding, M. G., Stears, A. J., Burdge, G. C., Wootton, S. A., & Sandeman, D. D. (2003). Premenopausal advantages in postprandial lipid metabolism are lost in women with type 2 diabetes. Diabetes Care, 26(12), 3243-3249.
Mauger, J.-F., Chassé, É., Mahat, B., Lindon, C., Bordenave, N., & Imbeault, P. (2019). The effect of acute continuous hypoxia on triglyceride levels in constantly fed healthy men. Frontiers in Physiology, 10, 752.
Meszaros, M., & Bikov, A. (2022). Obstructive sleep apnoea and lipid metabolism: The summary of evidence and future perspectives in the pathophysiology of OSA-associated dyslipidaemia. Biomedicines, 10(11), 2754.
Mokhlesi, B., Ham, S. A., & Gozal, D. (2016). The effect of sex and age on the comorbidity burden of OSA: An observational analysis from a large nationwide US health claims database. European Respiratory Journal, 47(4), 1162-1169.
Morin, R., Goulet, N., Mauger, J.-F., & Imbeault, P. (2021). Physiological responses to hypoxia on triglyceride levels. Frontiers in Physiology, 12, 730935.
Morin, R., Mauger, J.-F., Amaratunga, R., & Imbeault, P. (2021). The effect of acute intermittent hypoxia on postprandial triglyceride levels in humans: A randomized crossover trial. Journal of Translational Medicine, 19(1), 268.
Mosca, L., Barrett-Connor, E., & Kass Wenger, N. (2011). Sex/gender differences in cardiovascular disease prevention. Circulation, 124(19), 2145-2154.
Nguyen, T. T., Mijares, A. H., Johnson, C. M., & Jensen, M. D. (1996). Postprandial leg and splanchnic fatty acid metabolism in nonobese men and women. American Journal of Physiology-Endocrinology and Metabolism, 271(6 Pt 1), E965-E972.
Nielsen, S., & Karpe, F. (2012). Determinants of VLDL-triglycerides production. Current Opinion in Lipidology, 23(4), 321-326.
Nordestgaard, B. G., & Freiberg, J. J. (2011). Clinical relevance of non-fasting and postprandial hypertriglyceridemia and remnant cholesterol. Current Vascular Pharmacology, 9(3), 281-286.
Nordestgaard, B. G., & Varbo, A. (2014). Triglycerides and cardiovascular disease. The Lancet, 384(9943), 626-635.
Nuutila, P., Knuuti, M. J., Mäki, M., Laine, H., Ruotsalainen, U., Teräs, M., Haaparanta, M., Solin, O., & Yki-Järvinen, H. (1995). Gender and insulin sensitivity in the heart and in skeletal muscles: Studies using positron emission tomography. Diabetes, 44(1), 31-36.
O'Meara, N. M., Lewis, G. F., Cabana, V. G., Iverius, P. H., Getz, G. S., & Polonsky, K. S. (1992). Role of basal triglyceride and high density lipoprotein in determination of postprandial lipid and lipoprotein responses. The Journal of Clinical Endocrinology & Metabolism, 75(2), 465-471.
Palmisano, B. T., Zhu, L., Eckel, R. H., & Stafford, J. M. (2018). Sex differences in lipid and lipoprotein metabolism. Molecular Metabolism, 15, 45-55.
Paolisso, G., Tagliamonte, M. R., Rizzo, M. R., & Giugliano, D. (1999). Advancing age and insulin resistance: New facts about an ancient history. European Journal of Clinical Investigation, 29(9), 758-769.
Rifai, N., Warnick, G. R., & Dominiczak, M. H. (2000). Handbook of Lipoprotein Testing. American Association for Clinical Chemistry.
Roach, R. C., Hackett, P. H., Oelz, O., Bärtsch, P., Luks, A. M., MacInnis, M. J., Baillie, J. K., & Lake Louise AMS Score Consensus Committee. (2018). The 2018 lake louise acute mountain sickness score. High Altitude Medicine & Biology, 19(1), 4-6.
Romanski, S. A., Nelson, R. M., & Jensen, M. D. (2000). Meal fatty acid uptake in adipose tissue: Gender effects in nonobese humans. American Journal of Physiology-Endocrinology and Metabolism, 279(2), E455-E462.
Ryan, S., Cummins, E. P., Farre, R., Gileles-Hillel, A., Jun, J. C., Oster, H., Pepin, J.-L., Ray, D. W., Reutrakul, S., Sanchez-de-la-Torre, M., Tamisier, R., & Almendros, I. (2020). Understanding the pathophysiological mechanisms of cardiometabolic complications in obstructive sleep apnoea: Towards personalised treatment approaches. European Respiratory Journal, 56(2), 1902295.
Savransky, V., Jun, J., Li, J., Nanayakkara, A., Fonti, S., Moser, A. B., Steele, K. E., Schweitzer, M. A., Patil, S. P., Bhanot, S., Schwartz, A. R., & Polotsky, V. Y. (2008). Dyslipidemia and atherosclerosis induced by chronic intermittent hypoxia are attenuated by deficiency of stearoyl coenzyme a desaturase. Circulation Research, 103(10), 1173-1180.
Stricker, R., Eberhart, R., Chevailler, M.-C., Quinn, F. A., Bischof, P., & Stricker, R. (2006). Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT® analyzer. Clinical Chemistry and Laboratory Medicine (CCLM), 44(7), 883-887.
Turnbull, C. D. (2018). Intermittent hypoxia, cardiovascular disease and obstructive sleep apnoea. Journal of thoracic disease, 10, (Suppl 1), S33-S39.
Tzeravini, E., Tentolouris, A., Eleftheriadou, I., Chaviaras, N., Kolovou, G., Apostolidou-Kiouti, F., Stratigakos, E., & Tentolouris, N. (2021). Comparison of postprandial serum triglyceride and apolipoprotein B concentrations between the two phases of menstrual cycle in healthy women. Current Vascular Pharmacology, 19(4), 411-422.
van Hulten, V., van Meijel, R. L. J., & Goossens, G. H. (2021). The impact of hypoxia exposure on glucose homeostasis in metabolically compromised humans: A systematic review. Reviews in Endocrine & Metabolic Disorders, 22(2), 471-483.
Vickers, A. J., & Altman, D. G. (2001). Statistics notes: Analysing controlled trials with baseline and follow up measurements. British Medical Journal, 323(7321), 1123-1124.
Weiszenstein, M., Shimoda, L. A., Koc, M., Seda, O., & Polak, J. (2016). Inhibition of lipolysis ameliorates diabetic phenotype in a mouse model of obstructive sleep apnea. American Journal of Respiratory Cell and Molecular Biology, 55(2), 299-307.
Wendler, D., Michel, E., Kästner, P., & Schmahl, F. (1992). Menstrual cycle exhibits no effect on postprandial lipemia. Hormone and Metabolic Research, 24(12), 580-581.
Yki-Järvinen, H. (1984). Sex and insulin sensitivity. Metabolism, 33(11), 1011-1015.
Zaman, G. S., Rahman, S., & Rahman, J. (2012). Postprandial lipemia in pre- and postmenopausal women. Journal of Natural Science, Biology and Medicine, 3(1), 65-70.
Zilversmit, D. B. (1979). Atherogenesis: A postprandial phenomenon. Circulation, 60(3), 473-485.